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CHAPTER I

INTRODUCTION

The subject of this report Is the propagation of Intense acoustic

signals through an inhomogeneous ocean. The analysis is conducted both

analytically and numerically. Our approach is to use nonlinear geometrical

acoustics. The self-refraction of acoustic waves is neglected, and the

acoustic field Is assumed to consist of outgoing waves only. The effects of

reflections from the ocean bottom and surface and the effects of the

focusing of acoustic rays near caustics are not considered. In our

numerical algorithm we assume a stratified ocean even though the analytic

development Is for a fully inhomogeneous ocean in which temperature,

salinity, density, and sound speed vary with position. No losses are

considered in the analytic work. In the numerical algorithm, however, the

losses due to viscosity and relaxation are accounted for in an ad hoc

fashion. Our algorithm Is designed to propagate signals, which may contain

weak discontinuities, along a ray path using a stepwise time domain

technique and to apply absorption In the frequency domain.

When considering how to approach a problem Involving an Intense

sound wave, one usually examines the corresponding small-signal problem.

15
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Popular techniques for deiiing with the propagation of small-signal sounds

include the following: normdl modes, parabolic approximation to the wave

equation, and geometrical acoustics. Since we are interested in handling

discontinuitles, an approach which lends itself to a time domain implemen-

tation is preferred. Thus geometrical acoustics and the parabolic approxi-

mation are both good avenues for dealing wih intense sounds. As noted

above, we have chosen to use geometrical acoustics. The alternative

approach, the parabolic approximation, is being explored by McDonald and

Kuperman (1984).

Our Implementation of nonlinear geometrical acoustics Is

somewhat restricted. Since self-refraction Is neglected, the ray paths are

assumed to be determined solely by the Inhomogeneous medium and not

affected by the amplitude of the signal (Whitham 1956). It turns out that

this assumption places a limit of 282 dB// 1 lPa on the peak amplitude of

the signal. Reflections and focusing are neglected because neither are fully

understood for the case of Intense sound waves. Reflections and focusing

are avoided In the numerical work by a careful selection of the acoustic ray

paths. Because the acoustic rays are not permitted to either Interact with

ocean surface and bottom or to pass through caustics, the propagation

range is limited to a maximum of about 70 km In the deep ocean.

The primary objective of this work is to Investigate the

Importance of nonlinear effects at long ranges from an Intense acoustic

source such as an explosive. Because the amplitude of most underwater

sounds Is small, the most commonly used theory In underwater acoustics Is

small-signal theory. When dealing with underwater explosions,

4A
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investigators commonly assume that, after propagating a certain distance,

the Intense sound Is sufficiently diminished that small-signal theory

applies. One of the goals of this thesis Is to attempt to quantify this

assumption.

A. Review of Finite Amplitude Effects

An intense, or finite a&p/itude acoustic signal is distinguished

from the better known small, or infinitesima? signal by the amplitude of

the field variables such as the pressure or particle velocity. To aid in the

distinction, we introduce the acoustic Mach number M, a nondimensional

number equal to the ratio of the maximum fluid particle velocity to the

small-signal sound speed. In the case of small-signals, M is approximately

zero, Infinitesmally small. However, for the finite amplitude signals

considered in this report, M may be as large as 0.06, a small, but finite

value.

It Is well known that the propagation of a finite amplitude wave

cannot be accurately modeled by a small-signal acoustical theory. The

reason small-signal theory falls Is that It does not correctly predict the

propagation speed of the wave. The physical mechanisms that cause the

propagation speed to vary from the small-signal value are (I) the

nonlinearity of the pressure-density relationship of the medium and (2)

convection. Convection occurs when the fluid particles themselves are set

Into motion by the passing acoustic wave and contribute their velocity to

the total wave speed. The two phenomena, the nonlinearity of the

pressure-density relationship and convection, are embodied In the
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coefficient of nonlinearity p. These phenomena are present even in the

cases of small signals; they are just not perceivable. As the amplitude of

the signal increases, so does the significance of their effects. To

incorporate these effects into acoustical theory, one must consider the

nonlinear terms In the hydrodynamics equations. Therefore the theory that

governs a finite amplitude wave must be a nonlinear theory. Hence the

words finite amplitude and nonlinear are used interchangeably in this

report. Similarly the words small-signal and linear are used

interchangeably since small-signal theories are derived neglecting all

terms except linear terms.

The problem of propagation of plane finite amplitude waves

through a homogeneous medium has a solution that Is well established; see,

for example, Blackstock (1972). The nonlinear acoustical theory described

by Blackstock Is referred to as weak-shock theory. A shock is a

discontinuity In the field variable. If the shock is small enough to be dealt

with by a nonlinear theory that Is quadratic In the field variable, the shock

Is referred to as weak (see, for example, Whitham 1974, p. 37). The highest

amplitude dealt with in this report corresponds to M = 0.06 or,

equivalently, a peak pressure level of 282.6 dB //I VPa. According to

Pestorlus and Williams (1974), this level Is within the amplitude limits of

weak-shock theory. Pestorius (1973) developed a computer based version

of the weak-shock solution to plane finite amplitude acoustic propagation.

He used the computer program to solve problems Involving both finite

amplitude noise and periodic waves. As previously noted, a modified form

of Pestorlus's algorithm Is used in this report.
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The extension of finite amplitude plane wave theory to nonplanar

waves is of notable importance to this work (see, for example, Blackstock

1964). Blackstock extended the plane wave solution to the problem of

spherical and cylindrical finite amplitude acoustic waves. His approach

was to use two transformations to reduce the spherical (cylindrical) wave

equation to the form of the finite amplitude plane wave equation. The two

transformations, one for the field variable and the other for the range,

permit the use of the solution of the plane wave problem. The

transformations required to deal with plane waves propagating vertically

in a stratified medium were developed by Carlton and Blackstock (1974).

The idea of reducing a complex problem to a simpler one with a known

solution is used In this thesis.

B. Review of Linear Geometrical Acoustics

Two separate geometrical acoustic theories, one for infinitesimal

signals and one for finite amplitude signals, exist. The extension of linear

geometrical acoustics to incorporate finite amplitude signals is a

comparatively recent development. The two theories predict different

wave shapes, but the same ray paths. The older of the two, linear

geometrical acoustics, is described in the literature survey that follows.

Several methods for developing linear geometrical acoustics

exist. One approach originates in geometrical, or short-wave, optics as

developed by Hamilton (1832; see Conway and Synge 1931). The central

equation in the geometrical technique for both acoustics and optics Is the

so called eikonal equation. The eikonal equation defines the ray paths (see,

-Ck , M* -
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for example, Born and Wolf 1980, p. 112). The word eikonal comes for the

Greek word eikon, for image, and was introduced into physics by Bruns

( 895) (see, for example, Sommerfeld 1949, p. 207). Bruns developed a

function similar to the one developed by Hamilton and called it the eikonal.

The eikonal is a function of the spatial coordinate system and defines "a

system of surfaces the orthogonal trajectories of which are rays"

(Sommerfeld 1949, p. 337). Sommerfeld and Runge (1911 ) were the first to

derive the elkonal equation from the scalar wave equation. Their derivation

clearly shows that ray theory is exact only in the case of infinite

frequency. Ray theory is, however, a valid approximation to surprisingly

low frequencies. It turns out that the approximation depends on the degree

of inhomogeneity In the medium.

Sommerfeld (1949, p. 210) provides some interesting comments

about the elkonal and linear geometrical techniques in general. He states

that the eikonal equation is a specialization of Hamilton's equation of

dynamics. He notes that Hamilton worked on optical problems, then went on

to apply his knowledge to dynamics. Hamilton's work In dynamics is

embodied in the Hamilton-Jacobi equation, and analogies between the

elkonal and the action of the material particle are often made. Goldstein

(1950, p. 312) states that the Hamilton-Jacobi equation "tells us that

classical mechanics corresponds to the geometrical optics limit of a wave

motion." Consequently geometrical acoustics Is sometimes derived via the

Hamilton-Jacobi equation (see, for example, Landau and Lifshitz 1959,

p. 257). Sommerfeld observes that the WKB (Wentzel- Kramers- Brillouin)

!_.7



21

approximation of the wave equation corresponds to a transition from wave

optics (wave acoustics) to geometrical optics (geometrical acoustics).

Another way to develop linear ray theory is to use Huygens'

principle and Snelrs law. The first application (within acoustics) of this

approach was to analyze the problem of propagation in a moving,

inhomogeneous atmosphere (see, for example, Stuff 1979). The following is

a brief summary of some derivations and applications of linear geometrical

acoustics developed in this fashion.

Rayleigh (1 896,S 289) examined the problem of acoustic

propagation in a windy atmosphere. However he did not acknowledge the

difference between the direction of the acoustic ray path and that of the

normal to the wave (eikonal) surface. This flaw has been commented on by

several authors (Barton 1901; Kornhauser 1953; Lighthill 1965; Thompson

1972; Ugincious 1972 ). Several other researchers made use of linear ray

theory to study propagation of airborne sound. An early application is given

by Fujiwhara (1912; 1916). He derived three-dimensional acoustic ray

theory and applied it to the problem of sounds produced by the volcano

Asama in central Japan. Another interesting early work is that of Milne

(1921). His work is an outgrowth of research done during the First World

War on the acoustic detection of aircraft. Rothwell (1947) applied acoustic

ray theory to the problem of meteorological investigations by acoustical

techniques. It is interesting to note that Rothwells data is from

experiments performed in 1930 and 1931 in which 16 lb practice shells

were fired from an anti-aircraft gun. The data were originally applied to

the problem of acoustical detection of aircraft.

I1 m Il
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Because of the need to detect submarines, research on linear

geometrical acoustics underwent a resurgence during the Second World

War. In the years Immediately following the war, much of this research

was published. In a major work Blokhintzev ( 946a; 1946b) derived the

elkonal equation for a moving, inhomogeneous medium. Earlier researchers

had assumed that the acoustic energy is constant along the ray path.

BlokhInstzev found that a certain combination of the acoustic pressure, ray

tube area, sound speed, particle velocity, and density (not necessarily the

energy) stays constant along the ray path. From his work the term

Blokhrntzev invarint arose. Frank, Bergmann, and Yaspen (1969) discussed

the derivation of ray theory and gave a good account of the frequency limits
of the theory. Bergmann (1946) discussed the Importance of the density

variation and the gravity terms in the derivation of ray theory.

Over the years since the end of the Second World War, several

other derivations of linear ray theory have been given. Using tensor

calculus and a general curvilinear coordinate system, Haselgrove (1954)

derived ray theory via reciprocal surfaces. He applied his theory to radio

wave propagation, specifically to the calculation of Ionospheric ray paths, a

requirement for determining the maximum usable frequencies for

short-wave radio transmission. Haselgrove appears to have been the first

to use an electronic computer (EDSAC, Cambridge University Mathematical

Library) to calculate ray paths.

More recent derivations of ray theory include those of Eby and

Mfrtsev. Eby (1967) derived three-dimensional ray tracing using a Frenet

formulation. In another paper (Eby 1970) he examined the ray paths as
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temporal geodesics. Maltsev (1983) derived equations in barycentric

coordinates, a technique that simplifies the calculation of the ray paths.

C. Geometrical Acoustics for Finite Amplitude Signals

Until now the discussion has centered on the problem of deriving

ray theory for small-signal waves. We now address the problem of

geometrical acoustics for finite amplitude signals. Heller (1953) derived

the equation for the ray path of an acoustic discontinuity propagating in a

moving, Inhomogeneous medium. He referred to this equation as a
"generalized elkonal equation' and showed that weak shocks move along the

same ray paths as small-signal acoustic waves. Kornhauser (1953) showed

that Hellers generalized elkonal equation could be obtained by a simple

extension of the small-signal elkonal equation, Keller (1954) was the first

to discuss the variation of the shock strength along the ray path. Keller

solved the problem by examining the jump of the field variables across the

surface of discontinuity (see, for example, Jeffrey and Taniutl 1964). This

approach Is not common In acoustics today. Whitham (1956), In a major

work on the propagation of weak shocks, described extensions of linear

geometrical acoustics to encompass weak shocks. His development Is very

closely related to the nonlinear geometrical acoustical theory developed In

this report. Whitham assumed, as we do, that the self-refraction of the

acoustic ray paths is insignificant. Thus he used the ray paths from linear

ray theory and went on to develop a set of Improved relations to predict the

shock strength. In a discussion on the inadequacies of linear geometrical

acoustics, Whitham said, "It should be stressed that this inaccuracy is a

SM
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failure of the linear theory of sound and Is not Introduced by the

approximations of geometrical acoustics."

Also using a geometrical technique, Gubkin (1958) addressed the

problem of propagation of acoustic discontinuities in an inhomogeneous

medium. The solution was presented in a way more familiar to researchers

in acoustics, that is, by starting with the hydrodynamical equations and

making simplifying assumptions based on the degree of smallness of the

terms In the equations. Using similar notation, Ostrovsky (1963) examined

linear geometrical acoustics in nonstationary media. He then extended the

theory to include finite amplitude waves and applied the theory to the

problem of a sinusoidal finite amplitude wave in a steadily moving gas.

Ostrovsky introduced a parameter "g" which Indicates the influence of

medium inhomogeneity upon the shock formation distance.

In the late 1960's, there was a large interest in the propagation of

finite amplitude acoustic waves In an inhomogeneous moving atmosphere.

The stimulation was the problem of sonic booms from supersonic

transports (SST). Hayes, Haefeli, and Kulsrud (1969) developed a computer

program that uses small-signal acoustic ray theory, and then modifies the

result to account for finite amplitude effects. Seebass (1969) presented

the derivation of the equation for the acoustic pressure behind a

propagating weak shock. The equation was obtained by correcting small-

signal ray theory results for nonlinear effects. Seebass's result shows

how the acoustic pressure depends on the acoustic ray tube area In the case

of finite amplitude waves.
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In the mid- 1970's, interest in finite amplitude propagation In

stationary inhomogeneous media reappeared. Carlton and Blackstock (1974)

analyzed the problem of vertical propagation of finite amplitude plane

waves in a horizontally stratified ocean. The transform technique that

Carlton and Blackstock used is similar to that used by Blackstock (1964) for

nonplanar waves in a homogeneous medium. In a comment In the abstract,

Carlton and Blackstock (1974) state that their results were intended to be

incorporated in a ray theory for finite amplitude acoustic waves in the

inhomogeneous ocean.

Before Carlton and Blackstock had an opportunity to perform this

extension, however, the results of a parallel development were disclosed

Ostrovsky, Pellnovsky, and Fridman (1975; 1976) described the solut Ion of

the problem of propagation of finite amplitude waves in a stationary,

Inhomogeneous medium. Their work Is central to the discussion of

nonlinear geometrical acoustics (NGA) In this report.

Nonlinear geometrical techiques have been used in many

Investigations. Ostrovsky (1976) discussed applications of nonlinear

geometrical techniques to problems such as acoustic propagation in

nonstationary media and the heating of the sun chronosphere. Pel inovsky,

Petukhov, and Fridman (1979) extended NGA to include the effects of ocean

salinity. NGA was also expanded to encompass the effects of small

dissipation and dispersion (Pelinovsky and Fridman 1983). Warshaw (1980)

extended the results of Blokhintzev ( 946a, 1946b) to account for the

cumulative effects of the dissipative and second-order convective terms.

More recently the work of Pelinovsky, Petukhov, and Frldman (1979) was
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examined by Morfey (1984a). Morfeg Introduced a parameter 6 to describe

the effect of the Inhomogeneity on the shock formation distance. He

calculated the parameter for a variety of oceanic environments and

concluded that the effect of inhomogenelty upon finite amplitude

propagation Is small. Morfeyjs work Is used in this report.

D. Scope of the Investiatgion

This report is divided as follows: In Chapter 2 we establish the

criteria for simplifying the equations of hydrodynamics. The equations are

then simplified for the cases of small signals In homogeneous fluids, small

signals in Inhomogeneous fluids, and finite amplitude signals In

Inhomogeneous fluids. In Chapter 3 we discuss linear geometrical

acoustics and derive the elkonal and transport equations. At the same time

we Introduce some of the techiques required for the case In which the

signals are of finite amplitude. Nonlinear geometrical acoustics Is

presented in Chapter 4. The notation used varies slightly from that of

Pel Inovsky et al. (1979) and adheres more closely to that of Blackstock

(1964). In Chapter 5 we discuss the numerical implementation of the

findings of Chapter 4 The method of handling shocks In the waveform and

the transformation to the frequency domain to correct for absorption Is

due to Pestorius (1973). The computer based ray model used Is due to

Foreman (1983) Some of the results of the testing of the numerical

algorithm are presented. In Chapter 6 the numerical algorithm Is used to

study the effects of viscosity, relaxation, and dispersion on the propagation

of waves through the ocean. It Is also used to provide examples of the

-P .WWI
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effects of ocean inhomogeneity, on finite amplitude propagation. The

waveforms considered are a weak shock with an exponentially decaying tail

and Mrf eys ( 1985) modif ied f orm of the Wakeley explosion wavef orm

(Wake ley 1977).



CHAPTER 2

RANKING OF TERMS

A Intr io

In this chapter a method for simplifying the equations of

hydrodynamics Is discussed. An equation of state for seawater and the

hydrodynamlcs equations, Including loss terms, are presented. As

mentioned In Chapter 1, It is our Intention to neglect all losses during the

analytic development, and then account for viscosity and relaxation by a

special procedure In the numerical propagation routine. The viscosity and

heat conduction terms have, however, been Included In the hydrodynamics

equations so that the ranking system can be fully demonstrated. Basic

assumptions about (1) the amplitude of the signal, (2) the magnitude of the

loss coefficients, and (3) the type and degree of Inhomogenelty of the

medium are made. The terms In the equations are then ranked according to

their relative Importance. Use of the ranking system enables simplified

forms of the hydrodynamics equations to be readily obtained (Lighthtll

1956; Carlton and Blackstock 1974).

For an Inhomogeneous, thermally conducting, viscous fluid, an
equation of state and the hydrodynamics equations are as follows (see, for

28
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example, Panton 1984; the momentum equation is from Hunt 1955):

State P = P(,,X,p) . (Al)

Continuity ap/at + V-P u = 0 , (A.2)

Momentum pau/at + p(u-V)u -VP + pg + (X+2g)V(V-u)

- PVx(Vxu) + (Vu)V

+ 2(Vp-V)u + VIx(Vxu) (A.3)

Energy pe/t + p(u-V)e - -P(V-u) + 17._U + V-(XVT) , (A.4)

where P Is the pressure, t Is the salinity, X Is the entropy, p Is the density,

t Is the time, u Is the particle velocity, g Is gravity, X and p are,

respectively, the dilatational and shear viscosity coefficients, e is the

Internal energy, t Is the viscous stress tensor, X Is the coefficient of

thermal conductivity, and T Is the temperature. Since the emphasis of this
work is on acoustic propagation In the ocean, the salinity of the ocean Is

included In the equation of state. Note also that our coordinate system has

gravity acting in the positive z direction; that Is, z Is positive downward.

We expand the continuity and momentum equations. First we

express the density as the sum of a static value p0 and a small fluctuato(

p', and the pressure as the sum of a static value Po and a small fluctuation

Ps,

P=Po +p ' ' (A.5)

P"PO.P' (A6)
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In a static fluid the pressure and density fluctuations are zero. In this

case, the continuity equation, Eq. (A.2), is identically satisfied while the

momentum equation, Eq. (A3), reduces to

VPo = Pog (A7)

If Eqs. (A.5) and (A.6) are substituted into the continuity and momentum

equations, and Eq. (A7) is used to reduce terms in the latter, the following

equations are obtained:

Continuity '/at + poV-U = -u-VPo - u-Vp' - p'V-u , (A.8)

Momentum Poau/t + VP' = (p,/po)VPo - p'au/at - Po(U-V)u - p'(u-V)u

* (X,2g)V(V-u) - pVx(Vxu)

+ (V-u)VX + 2(V11V)u + Vpx(Vxu)

+ (V-U)V(X + 2W . (A.9)

To simplify Eqs. (A8) and (A9), we must have some knowledge of the

relative importance of each of the terms.

We now state our basic assumptions: The magnitude of the

particle velocity, lW, is assumed to be small with respect to the sound

speed co, but not necessarily infinitesimal. It turns out that this

assumption Implies that the pressure fluctuation P' is small with respect

to PoCo2 and that the fluctuation p' is small with respect to po. The above

assumption Is expressed mathematically as follows:

p
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1u 4c , (A. 1o)

Ipl 0  , (K 11)
IP'I 4 poc02  (A. 12)

As for the inhomogeneity of the medium, It is assumed that environmental

properties of the seawater such as the density, temperature, salinity, and

sound speed vary with position. As can be seen from Eq. (A), the static

pressure Is assumed to vary only with depth. We assume that the ocean Is

only mildly Inhomogeneous; that is, the environmental properties vary

slowly on a wavelength scale. Consequently the derivative of an

environmental property, for example Vpo, Is small; that Is,

xlVPol 4 Po ,  (A.13)

where X Is the wavelength. Losses due to heat conduction and the diffusion

of dissolved salts are assumed to be zero; however, losses due to viscosity

and relaxation are assumed to be small, but not zero.

Before stating the ranking system, we define some nomenclature.

A linear term with a coefficient containing a first derivative of an

environmental parameter is referred to as an Inhomogeneaty term;

examples are u.Vpo or VPo(P'/Oo). Linear terms with coefficients

containing a constant loss coefficient, such as (X + 21)(V-u), are referred

to as dissipation terms. Similarly terms containing a quadratic nonlinear

term with a coefficient that contains neither a derivative of an

environmental property of the fluid nor a loss coefficient are referred to
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as nonlinearity terms; examples are po(u-V)u and p'(V-u). Nonlinearity

terms are associated with finite-amplitude behavior.

Use of the assumptions stated above enables the various terms In
the hydrodynamics equations to be ranked by degree of smallness as

first-order terms, second-order terms, and higher-order terms. A

first-order term is defined as a linear term with a coefficient that

involves neither derivatives of environmental properties of the fluid nor a

loss coefficient. Examples of first-order terms are po(V-u) and po0 u/at.

Second-order terms represent only the most important effects of

nonlinearity, Inhomogeneity, and losses. Accordingly Inhomogeneity terms,

nonlinearity terms, and dissipation terms are classified as second-order

terms. Since the effects of nonlinearity, inhomogeneity, and losses were

assumed small, any term representing the interaction of any two effects
would be expected to be negligible. Such terms are encompassed in the

third major category, higher-order terms. Examples of higher-order terms

are cubic terms such as p'(u-V)u and nonlinear inhomogenelty terms such

as Vpo(u-V)u. Linear terms with coefficients that contain higher-order

derivatives of environmental properties, or that are nonlinear In the first

derivative of an environmental property are also higher-order terms;
examples are (Vpo-VPo)p ' and p'V2Po.

Use of the ranking system makes it relatively easy to deal with

special cases such as small-signal waves in a lossless inhomogeneous fluid

and finite amplitude (but not strong) waves in dissipative homogeneous

fluid. The hydrodynamics equations can be simplified and, in most cases,

combined to form the wave equation corresponding to the situation at hand
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B. Simplifying the Lossless Hudrodynamics Eguations

The analysis from this point on deals solely with lossless fluids.

The effects of the dissipation terms are considered In the numerical

propagation routine discussed in Chapter 5. In this section the

hydrodynamics equations are simplified to find (1) linear equations for a

homogeneous fluid, (2) linear equations for an Inhomogeneous fluid, and

(3) nonlinear equations for an inhomogeneous fluid. Since all three sets of

equations are for lossless fluids, the loss terms can be dropped from the

expanded momentum equation, Eq. (A.9), and from the energy equation,

Eq. (A4). The state and hydrodynamics equations are then as summarized

below:

State P = P(,,X,p) , (Al)

Continuity ap'/at. +(V-u) = -u-Vp o - u-Vp' - p'(V-u) , (A8)

Momentum poau/at + VP' M (p'/po)VPo - p'au/at - Po(U-V)u , (B. 1)

Energy DX/Dt - 0 , (B.2)

where D(.)/Dt Is the material derivative and Is defined as follows:

D(.)/Dt = a(s)/at + (W-V)() (B.3)

A physical Interpretation of the energy equation for an Inhomogeneous

fluid, Eq. (B.2), Is that the entropy of any given fluid particle remains

constant (see, for example, Pierce 1981, p. 12). In the case of a
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homogeneous fluid, the energy equation would be a little simpler. It would

be Interpreted as meaning that the entropy Is the same for all fluid

particles.

Since there are five variables and only four equations, we need

another equation. We can get It from our earlier assumption that the losses

due to the diffusion of dissolved salts are zero. This assumption Is

equivalent to saying that the change In salinity of any one fluid particle Is

zero (Landau and Lifshitz 1959, sec. 57),

OlE/Dt - 0 (B.4)

1. Linear Hydrodynamics Eouations for Lossless Homogeneous

Retention of only first-order terms simplifies the hydrodynamics

equations into a set of linear equations for homogeneous fluids. Since all

the terms on the right-hand side of Eqs. (A8) and (B. 1) are second-order

terms, they must be dropped. This leads to the following:

Linear Continuity ap',/at poVU = 0 , (B.5)

Linear Momentum poau/at + VP' = 0 (B.6)

Turning our attention to the equation of state, Eq. (A. 1), we see that by using I
a Taylor series expansion and retaining terms up to first order, the

following equation can be obtained:

m .
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P-P 0 (p - (B.7)

The small-signal sound speed Is defined as follows:

2 aI (1.8)
LUP..I a PO

Substituting Eq. (B.8) Into the equation of state, Eq. (B.7), and using the

expressions for the density and pressure given In Eqs. (A.5) and (A.6), we

arrive at the following.

P' = c02 P (B.)

Equations (B.5), (B.6), and (B.9) are the linearized continuity, momentum,

and state equations for a lossless homogeneous ocean.

2. Linear Hjdrodunamics Eauations for Lossless Inhomogeneous

Retention of first-order terms and inhomogeneity terms

simplifies the hydrodynamics equations into a set of linear equations for

Inhomogeneous fluids. The continuity equation Is obtained from Eq. (A.8) by

dropping the nonlinear terms, the last two terms on the right-hand side.

Similarly, the momentum equation Is obtained from Eq. (B. 1):

Continuity ap'/at + poV-U + u-Vp o = 0 , (B. 10)

Momentum po/at + VP - (p /po)VPo - 0 (B. 11)
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The equation of state is obtained by taking the material derivative of

Eq. (A. I ),

DP . Dpfap} DX{3P DP + - , (B. 12)
D t 5 t a p k O 0 P D t jXa ,k .- .tX " to  P , .) L = t ' I

If Eqs. (B.2) and (B.4) are substituted Into Eq. (B. 12), the second and third

terms of Eq. (B. 12) drop out. Expansion using the definition or the

small-signal sound speed, Eq. (B.8), yields

State ap'/at + uVp0 = C02 (ap/at + uP) (B. 13)

Thus the linear equations of continuity, momentum, and state for a lossless,

inhomogeneous fluid are Eqs. (B. 10), (B. 11), and (B. 13).

3. Nonlinear Hydrodunamics Eauations for Lossless Inhomogeneous

Fluids
Retention of first-order terms as well as Inhomogeneity and

nonlinearity terms simplifies the hydrodynamics equations into a set of

nonlinear equations for inhomogeneous fluids. The nonlinear equations of

continuity and momentum for a lossless Inhomogeneous fluid are Eqs. (A.8)

and (B. 1); no terms need to be dropped. The equation of state is more

complicated than it was in the previous two cases. Retaining terms up to

second-order in the Taylor series expansion of Eq. (A. ), we obtain

~A ,F -
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P-P 0 +(PP) {} _ (Po2 r 2{P1
MF, - PO 2 -- PO

+ R , to) r0 I,+,X - Xo) a B 4

where it has been assumed that variations In the salinity and entropy are of

second-order in smallness. Using the definition of the small-signal sound

speed, Eq. (B.8), and the expressions for the density and pressure given in

Eqs. (A-5) and (A.6), we see that Eq. (B. 14) becomes

I IP12(a2PI + (k -to) rap}

+ (X- XO) rxi (B.15)taxi .A - Xo

The nonlinear continuity, momentum, and state equations for a lossless

Inhomogeneous fluid are Eqs. (A.8), (B. 1), and (B. 15).

C. Substitution Into Second-Order Terms Using First-Order Relations

Once a simplified form of the hydrodynamics equations has been

obtained, the same level of approximation must be maintained consistently

throughout any subsequent analysis. In the course of such analysis, it is

often necessary for the dependent variable in a term to be replaced with an

equivalent expression. It Is therefore useful to note that the dependent

variables In second-order terms may be replaced using first-order
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relations without decreasing the overall level of the approximation. For

example, suppose we decided to recast the p'8u/at term In Eq. (B. ). By

using Eq. (B.6) we could substitute VP/po for au/Mt; thus an equivalent

second-order expression, (P'/po) VP', is formed. If we had substituted

using an expression from Eq. (B. 1 I), however, a higher-order term,

p'2VPo/po, would be Introduced. This term would have to be dropped In

order to maintain the same level of approximation. This extra step Is

avoided by using the following rule: When substituting for the dependent

variable In a second-order term, use a first-order relation (see, for

example, Lighthill 1956).

In this chapter a ranking system was defined, and then used to

simplify the lossless hydrodynamics equations Into specialized forms.

These forms can be readily combined into (1) the small-signal wave

equation for homogeneous fluids, (2) the small-signal wave equation for

Inhomogeneous fluids, and (3) the nonlinear wave equation for

Inhomogeneous fluids.

2



CHAPTER 3

LINEAR GEOMETRICAL ACOUSTICS

In this chapter linear geometrical acoustics, commonly referred

to as ray theory, is discussed, and the mathematical techniques required

for nonlinear geometrical acoustics are Introduced. The linear

hydrodynamics equations for a lossless Inhomogeneous medium are

combined to form the corresponding wave equation. A Galllean

transformation In which the speed of the moving coordinate system Is the

small-signal sound speed co Is Introduced. At the same time we Introduce

what Is called the geometrical acoustics assumption. Use of the Galilean

transformation and geometrical acoustics assumption enables us to

separate the wave equation into two equations: the transport equation and

the elkonal equation. The development Is performed solely In the time

domain. The gradient of the elkonal Is related to the variation of the sound

speed in the medium. For the case of a stratified ocean, we reduce the

elkonal equation to an expression for the radius of curvature of the ray

path The transport equation Is then reduced, via two transformations, to

the form of the first-order plane wave equation for a homogeneous fluid.

39
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The analysis starts with the linear hydrodynamics equations

which include inhomogeneity terms. By the end of the derivation, however,

all the inhomogenetty terms have been neglected. The inhomogenetty of the

medium thus enters the wave equation solely through the dependence of the

sound speed on position. Hence the results of this chapter are, within the

ranking scheme of Chapter 2, valid to a first-order approximation.

B. Linear Lossless Wave Eauation for Inhomogeneous Fluids

In this section the linear lossless hydrodynamics equations for an

inhomogeneous fluid are combined to form a wave equation. First the

continuity and state equations, Eqs. (2-B. 10) and (2-B. 13), are combined to

eliminate the ap'/at' and u-VPo terms. The time derivative of the result Is
a2 p, aU 2 U2-- -.Vp,+o V-o . 0 (B. 0

Use of the momentum equation, Eq. (2-B. I I ), eliminates the factor au/at

term In Eq. (B. 1). The result may be arranged In a convenient form

.o a2 p' VPo" VP' V (VP- c0Vp')
-C~

2  PO POc2v'p' ;p " po-12

P 2V2o P 2. V
2 2 + V P PO (B.2)POCo PO PO v °

Since the three terms on the right-hand side of Eq. (B.2) are higher-order

terms, they must be discarded In order to maintain the same level of

L%

~ -. .%.% . ,, & ~ .
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approximation. The fourth term on the left-hand side of Eq. (B.2) appears to

be of second-order of smallness, an Inhomogeneity term. Recalling the rule

mentioned in Chapter 2, we may employ a first-order relation to substitute

for the dependent variable P'. The appropiate first-order relation is the

linear state equation for a homogeneous fluid, Eq. (2-1.9). Its use shows

that the fourth term Is actually of higher order and must therefore be

dropped. The effect of discarding the fourth term is tantamount to having

derived the wave equation disregarding the gravity term in the momentum

equation, Eq. (2-A.3) (Bergmann 1946). By a more physical discussion,

Bergmann concluded that the gravity term may be neglected in all but a few

extreme situations, such as the propagation of very low frequency signals.

If all of the terms mentioned above are removed, Eq. (B.2) may be

written as follows:

V2p, I a2p Vp°'VP' = 0 (B.3)Co2 gt2  PO

The first and second terms of Eq. (B.3) constitute the classical wave

equation.

The third term Is present because of the inhomogeneity of the fluid;

this term was also discussed by Bergmann (1946). He concluded that it may

be neglected if the density gradient Is sufficiently small, or if the

frequency of the signal is sufficiently high. (This may be shown by

considering an example situation similar to that used below in Section E.)

In fact Brekhovskikh and Lysanov (1982) state that the density gradient



42

term may be neglected for frequencies as low as 1 Hz. If the density

gradient term is neglected, Eq. (B.3) becomes

V2P 1 a2p, = 0 (B.4)
c2 at2

which has the form of the classical wave equation. Thus to a first-order

approximation, all the effects of the fluid Inhomogeneity enter through the

variation or the small-signal sound speed co.

C. Geometrical Acoustics Assumption

The assumption that we are about to make Is referred to as the

geometrical acoustics assumption (see, for example, Landau and Ltfshitz

1959, p. 256). The assumptions made up until now can be seen clearly with

the aid or the ranking scheme; only first-order terms and second-order

Inhomogenelty terms have been retained, and the latter have been found

Insignificant. For geometrical acoustics another assumption Is needed. We

assume that the surface defined by an arbitrary wavefront Is made up of

many small segments of area, each of which may be regarded as plane. This

Is a reasonable assumption, since we are concerned with long range

propagation. At long ranges the curvature of a spreading wave Is very

small. The signal associated with each small segment of area follows a

path that Is perpendicular to that segment. The path Is called a ray; see

Fig. 3. 1. Within the geometrical acoustic assumption the travel time

associated with propagation along each ray Is defined as the Integral of the

reciprocal of the local sound speed along the ray path. All of the small
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plane surface elements that make up the wavefront are assumed to have the

same phase (travel time), and hence the expression ewipAse wavetronts.

A small bundle of rays may be thought of as forming a tube. Since within

the geometrical acoustics assumption no propagation takes place across

rays, a propagating disturbance is bounded by the walls of its ray tube.

The geometrical acoustics assumption has, of course, a range of

validity (see, for example, Frank, Bergmann, and Yaspan 1969, p. 63). When a

ray turns appreciably over the distance of a wavelength, the equiphase

wavefront assumption breaks down and diffraction has a strong effect on

the propagation (signals do not remain confined to their ray tubes). It turns

out that, for a ray to turn appreciably, the sound speed must vary rapidly

over a wavelength. Hence, for geometrical acoustics to be a valid

assumption, the sound speed must vary slowly on a wavelength scale.

Before Imposing the geometrical acoustics assumption, we need to

Introduce the concept of retarded time. Consider a Galilean transformation

In which the speed of the moving coordinate system Is the small-signal

sound speed co. In this system the new time t' is termed retarded time.

For a plane wave, retarded time is defined as follows:

t' -t-x/co  . (C.1)

where x is the distance the wave is propagated. Note that x/cO is the travel

time for all points on the wavefront; thus plane waves are equiphase

wavefronts. For a spherical wave retarded time Is

to - t - (r-ro)/co , (C.2)
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where r Is the radial range and ro Is the reference range. In this case the

travel time Is (r-ro)/c o. Note that geometrical acoustics Is exact in the

case of plane and spherical waves.

The use of retarded time as a new Independent variable greatly

simplifies wave equations. To illustrate this we use the retarded time

variable in the first-order plane wave equation for a wave moving

outwards through a homogeneous fluid. A first-order plane wave equation

may be formed by separating the commutable derivatives in the classical

wave equation as follows (see, for example, Pierce 1981, p. 20):

[a/at - Co-1 a/ax] [/at + co' a/ax] P' = 0 . (C.3)

The first term in square brackets may be thought of as an operator

associated with Incoming waves, and the second term, with outgoing waves.

Integration with respect to one of the operators leads to a first-order

wave equation. The integration constant must be zero to satisfy static

conditions. The first-order wave equation for outgoing waves is as

follows:

. aP'/at Co ap /ax - 0 (C.4)

Substitution of the outgoing wave function P'(t - x/co ) into Eq. (C.4) shows

that Eq. (C.4) Is the correct wave equation. If new Independent variables x,

t', where t' is given by Eq. (C. 1), are Introduced, Eq. (C.4) becomes

P/x - 0 (C.5)
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This is a considerable simplificatio. The physical interpretation of

Eq. (C.5) Is simple: Since all points on the wave move with the same velocity

as our new coordinate system, the wave appears motionless. Hence the

derivative of the pressure with respect to x, holding t' constant, is zero.

The definition of retarded time In an inhomogeneous fluid is

similar to its definition for plane and spherical waves. Because the

small-signal sound speed may change along the ray path, the travel time is

now a path integral:

t -t-Jds/co  , (C.6)

where ds is an incremental step along the ray path.
We now state a general definition of retarded time and Introduce

the elkonal t(r,

t' a t - +(r) (C.7)

Note that the elkonal Is a function of the ray path position vector r; it Is

not a function of V. The elkonal Is defined to represent the travel time, or

phase shift, associated with the distance between the origin of the wave

and Its current position. The integral In Eq. (C.6) plays the same role. It

turns out that in the case of Inhomogeneous media, this definition of the

elkonal Is equivalent to imposing the geometrical acoustics assumption.

Note that If the elkonal t(r) is constant, an equiphase wavefront is defined.

(For this reason, equiphase wavefronts are sometimes referred to as

elkonal wavefronts.) Equiphase wavefronts are part of the geometrical
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acoustics assumption. Thus use of the eikonal in our definition of retarded

time means that the geometrical acoustics assumption is invoked.

The rate of change of the phase of the equiphase wavefront may be

defined, by analogy with Eq. (C.6), as follows:

IVil = l/co (C.8)

This definition is important to our work in both this chapter and the next.

We now develop the relations necessary to apply the Galilean

transformation based on Eq. (C.7) and thus to introduce the geometrical

acoustics assumption. First the effect of the transformation on the spatial

and temporal derivatives, V and a/at, is determined. Careful application of

the chain rule leads to

aP'/at - aP, at' , (C.9)

VP' -. VP' - V taP'/at' , (C. 10)

V-u -4 V-u - V*'-au/at' , (C.1 I)

V P -I V 2a 2- (V*,VP') - V2* LP +V2 P (C.12)
at12  at, at'

As Is shown below, the terms VkaP'/6t' and VP' In Eq. (C. 10) are,

according to the ranking system of Chapter 2, associated with first-order

effects and second-order effects, respectively. It Is relatively simple to

show that VtP'/t' Is associated with first-order effects. Recalling

Eq. (C.5) we note that, after making the Galilean transformation, a linear
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progressive plane wave appears motionless to the observer. The variation

of the wave occurs solely with respect to the retarded time variable t'.

Hence the derivative of a field variable, such as aP'i/t', is a first-order

term.

To show why the spatial variation VP' is associated with

second-order effects, we again recall Eq. (C.5). In that equation we see that

the spatial variation is zero in the case of a small-signal progressive plane

wave. In the moving coordinate system the spatial variation term can have

a non-zero value only if a wave changes its shape as it propagates. Three

causes of change of shape are the decrease in amplitude due to geometric

spreading, the effects of inhomogeneity, and finite amplitude effects. We

are interested in propagation to long ranges, well into the farfield; hence

the change due to geometrical spreading is small. In the ranking scheme of

Chapter 2, the terms associated with small effects such as nonlinear

distortion are ranked as second-order. Accordingly terms containing VP'

are ranked as second-order. Note that we assume that the vector VP' is

tangent to the ray path. This is in keeping with the geometrical acoustics

assumption wherein the propagation of the signal down each ray tube is

treated individually.

Because in the r, t' system VP' is a second-order term, the

first-order equivalent of Eq. (C. 10) is

VP' = -Vi,5P'/at' (C.13)

This relation is useful in reducing second-order terms. Recall the

substitution rule that was mentioned in Chapter 2. For example, the

........ ..... ........... . - - - , ' '1_
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Galilean transformation of the second-order quantity Vpo-VP' in Eq. (B.3)

has several parts, but on application of Eq. (C. 13) reduces to
(V*-VPo)aP'/at'.

Equation (C. 13) is also useful for maintaining the same order of

approximation in first-order relations. For example, consider the

linearized momentum equation for a homogeneous medium, Eq. (2-B.6). The

Galilean transformation of it with application of Eq. (C. 13) In place of

Eq. (C. 10) is as fol lows:

PobU/at ' = VIP aP'/at' (C.14)

Because *, is not a function of t', we may easily Integrate Eq. (C. 14) with

respect to t'. Note that the Integration constant must be zero In order to

satisfy static conditions. The result Is

u - (P'/Po)Vt . (C. 15)

This expression may be thought of as a generalization of the progressive

plane wave Impedance relation, P' = pocou. Equations (C. 13) and (C. 15) are

used In the next chapter to simplIfy nonlinear terms.

We now apply the Galilean transformation to the small-signal

wave equation for Inhomogeneous media, Eq. (B.4). Using the transforms of

the spatial and temporal derivatives, Eqs. (C.9) and (C. 12), we obtain the

following:
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1 ~ p a 2 2.( V-I+ 2 -t(2V -VP'+V P') = V2P . (C.16)

In order to assess the relative importance of the term on the

right-hand side of Eq. (C. 16), V2P', we need to understand its physical

significance. The Laplacian of the acoustic pressure P' is defined to be the

divergence of the gradient of P'; that is, V2P' - V-VP'. It has already been

argued that, in the moving coordinate system, VP' is related to

second-order effects, the variation of the shape of propagating wave. Hence

V'VP' Is the rate of change of the variation. In the case at hand,

small-signal propagation, the variation of the propagating wave is due

solely to geometric spreading. In geometrical acoustics the ray paths are

not permitted to turn appreciably over a wavelength; hence the spreading

takes place gradually. The rate of change of the spreading is therefore

assumed to be zero. In the case of finite amplitude waves, the situation is

not so simple. As already noted the term VP' is assumed to be associated

with the second-order effects of finite amplitude and Inhornogenelty; It Is

also assumed to be tangent to the ray path. We now assume the distortion

effects occur slowly and without sudden changes. With this assumption the

term V2P' can be neglected since I VP'j * I V2P' I. Note that in other

situations, such as those in which the rays turn rapidly, the term V2P' is A

important since it accounts for diffraction (Pelinovsky, Petukov, and

Fridman 1979).

If the right-hand member is neglected, Eq. (C. 16) may be expressed

as follows:

-= *Vwr ~W~
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-P'* V (V*P2' ] = 0 (C.17)

We now split Eq. (C. 17) into two parts. To do this we use Eq. (C.8) which was

obtained from the geometrical acoustics assumption, and which shows that

the first part of Eq. (C. 17) vanishes,

!/%2 - iv*l 2 -o (C.l18)

Equation (C. 18) is referred to as the elkonal equation. As Is shown In the

next section, the elkonal equation dictates the acoustic ray paths. The

remainder of Eq. (C. 17) may be Integrated once with respect to the retarded

time variable V. Noting that the integration constant must be zero In order

to satisfy static conditions, we arrive at the following:

V . (Vk'P,2 ) = 0 (C. 19)

Equation (C. 19) is called the transport equation and is equivalent to

Eq. (8-5.13) In the book by Pierce (1981). It turns out that this equation

governs the variation of the acoustic pressure along the ray path.

D. Rag Paths from the Elkonal

In this section it is shown that the elkonal equation, Eq. (C. 18),
,.

defines the acoustic ray paths. (A ray path and the coordinate system are

shown In Fig. 3.2.) First the connnection between the elkonal and the ray

path Is found. Next the ray path Is linked to the spatial variation of the

jj8 kl i
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sound speed. We then combine the two ideas and find a general relation for

the ray paths in terms of the gradient of the elkonal, the gradient of the

sound speed, and the tangent to the ray path. The general relation is then

simplified for the case of a stratified medium.

A connection between the elkonal and the ray path is sought. The

elkonal defines an equiphase surface; thus V, is by definition, normal to

that surface (see, for example, Thomas 1968, Sec. 15.6). Since Eq. (C. 18)

gives the square of the magnitude of V*, It is easily seen that

coV, = n , (D.1)

where n is the unit normal to the surface. It is known from vector calculus

that the unit tangent to the ray path T is defined as the derivative of the

ray path position vector r with respect to the ray path lengths,

T a br/s . (D.2)

Since the ray path is normal to the wavefront, the unit tangent to the ray

path and the unit normal to the wavefront are equal,

T=n . (D.3)

(Note that they are not necessarily equal in the case of a moving medium;

see, for example, Pierce 1981, p. 371.) Combining Eqs. (D. 1) and (D.2) yields

the following relation:

COV+' - ar/as (DA.4)
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The gradient of the eikonal is thus closely related to the tangent to the ray

path.

An equation that links the ray path with the variation of the sound

speed In the medium Is now sought. From the Frenet-Serret formulas (see,

for example, Sokolnikoff and Redheffer 1958, Sec. 4.11 ), we know that a ray

path may be thought of as a sequence of arcs of radius R, wherein R varies

as a function of position along the ray path. The following equations are

part of the Frenet-Serret formulas:

KN T/as , (D.5)

R a 1/K , (D.6)

where K is the curvature and N is the principal normal. The principal

normal is defined to be normal to T and point towards the center of

curvature. From the above relations the radius of curvature R may be

expressed as follows:

R= aT/asV' (D.7)

Because of Its close relation to the ray path, let us find an

expression for R or, equivalently, an expression for aT/as. Use of Eq. (D.2)

yields

aT/s = a(ar/as)/as . (D.8)

Noting Eq. (D.4) and the relation a/as - (ar/as -V), we see that Eq. (D.8)

becomes
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DT/ = (r/s • V)(CoV,) (D.9)

Reapplication of Eq. (D.4) gives

T = (coV, - V) (CoVe,) (D. 10)

Use or the chain rule and the following relation (see, for example,

Gradshteyn and Ryzhlk 1980, Eq. 10.31.3),

(V+,V)Vi' - 1/2V(Vt -Vi,)

in Eq. (D. 10) leads to

WaT/s = V,(CoV*.Vc o) + (C02/2) V(V*,Vt) l(D. I1)

- 2 Use of the elkonal equation, Eq. (C.T8), and the chain rule in Eq. (D. 11) yields

aT/as = coVt(Vi'-Vc o) - (VCo)/C o  . (D. 12)

Recalling Eq. (D.7) we note that Eq. (D. 12) connects the radius of curvature R

to the variation in the sound speed Vco. Since the ray paths are arcs of

radius R, Eq. (D. 12) may be thought of as connecting the ray paths with the

variation of the sound speed. Equation (D. 12) is equivalent to Eq. (66.6) in

the book by Landau and Lifshitz (1959).

A physical understanding of Eq. (D. 12) may be obtained by

considering a simple example. Let the medium be azimuthally symmetric

(thus restricting ourselves to the x,z plane) and stratified, that is, the

sound speed profile does not vary in range. (Recall that k is in the direction
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of increasing depth.) An expression for the radius of curvature R can be

found by reexamining Eq. (D. 12). Under conditions stated above, the terms in

Eq. (D. 12) may be defined as follows:

Vco =kh (D.13)

ar/as - i cos 8 + k sinO , (D.14)

where h Is the gradient of the sound speed profile aco/az, 0 is the acute

angle between the ray path and the horizontal (see Fig. 3.2), and I and k are

unit vectors in the Cartesian system. If Eq. (D.4) is used, Eq. (D. 14) may be

recast in the following form:

V, = I co-' cos 0 + k c0 1 sin 0 (D.15)

Substituting Eq. (D. 13) and (D. 15) into (D. 12) yields the following:

aT/s = h co- 1 cos 0 (0 sin 0 - k cos 0) (D.16)

Let us interpret Eq. (D. 16). From a geometrical consideration of

the equation we see that, if the gradient h is positive, the center of

curvature is above the current ray path position. The converse is true

when h is negative. Thus the acoustic rays bend toward the region of the

slower sound speed. From the reciprocal of the magnitude of Eq. (D 16), we

obtain the radius of curvature:

R =co/(Ihl cos 0) (D.17)

-~ .,. -P. *
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The quantity co/cos 0 in Eq. (D. 17) is, according to Snell's law, a constant.

From Eq. (D. 17) and Snell's law we see that, If h is constant, the radius of

curvature R must be constant. Therefore rays In a constant gradient

medium are circular arcs. Equation (D. 17) appears in a variety of

references (see, for example, Officer 1958, Eq. 2-82).

In summary it has been shown that, from the eikonal equation and

the relations of vector calculus, a general expression for the ray paths may

be found. Moreover, in the case of a constant gradient medium, the ray

paths are circular arcs.

E. Acoustic Pressure from the Transoort Eauation

In this section It is shown that the transport equation, Eq. (C. 19),

may be placed In the form of the first-order plane wave equation in the

moving coordinate system, Eq. (C.5). It turns out that the transport

equation governs the acoustic pressure at any point along the ray path, and

that the acoustic pressure is related to the area of the ray tube. To show

this we introduce the concept of ray coordinates and use an expression that

Is required In our development of nonlinear geometrical acoustics. (The

details of the transformation from Cartesian coordinates to ray

coordinates are included in Appendix A.) The three ray coordinates are the

ray path length s and the initial ray launch angles and tp; see Fig. (3.2).

To reduce the transport equation we need an expression for V2*, .

The following relationship is derived in Appendix A:
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V2 1 LOA (El)
AO as ~CO

where Ao is the ray tube area. It is shown below that the dependence of

V2 + on the variation in the sound speed may be neglected. We first

rearrange Eq. (E. I) as follows:

.I - - - (E.2)
Vt C0 [A0 as A05J (E.2)0)

where Aos and co, are the ray tube area and the sound speed at the

reference ray path length (0 meter In this example). Consider vertical

propagation in a stratified ocean 5000 m deep. Let the sound speed

increase linearly with depth from 1400 m/s to co, = 1600 m/s; i.e.,

co = 1400 + 0.04 z, where z is the depth. This Is a larger variation than is

usually expected in the ocean and may be regarded roughly as an upper

bound. In the case of vertical propagation, a/as = a/az and the ray tube

areas may be approximated by using spherical spreading. The ratio of the

ray tube areas Ao/A, is z2; hence 6(Ao/Aot)/az = 2z. If the propagation

path Is the full ocean depth, 5000 m, the term (Aos/A o)a(Ao/Ao,)/as Is equal

to 4 x 10-04.Using the conditions given above, the term (cos/Co)(C/co)/as

can be seen to be approximately 3 x 10-0. Therefore, even when the

variation of the sound speed is unusually large, the term

(co,/co)a(Co/Co,)/as is small with respect to (Ao,/A o )a(Ao/Ak,)/as. The

variation in the sound speed is therefore neglected in Eq. (E.2), and Eq. (E. 1)

reduces to
'Ih
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V2 + - (CoAo)r1 6Ao/aS (E.3)

One other relation is required to reduce the transport equation.

Starting with the expression a/s = (r/bs • V), and recalling Eq. (D.4), we
see that

V+- V() = ( /co)a(.)/as (E.4)

Simplification of the transport equation, Eq. (C. 19), Is obtained by

forcing it toward the form or Eq. (C.5). Substitution of Eqs. (E.3) and (E.4) In

the transport equation gives the following:

AP' P_ aA° . 0 (E.5)as 2Ao as

Equation (E.5) may be expressed as a perfect differential by multiplying

both sides by Ao/2 and rearranging,

a(P'Aol/ 2 )/as = 0 (E.6)

A physical Interpretation of Eq. (E.6) is that P'Ao/ 2 Is constant along the

ray tube, a result consistent with the assumption that the energy is

constant along the tube. The fact that P'Aol/ 2 is constant suggests a new

dependent variable, one for which the amplitude is not affected by

geometric spreading. To make the new dependent variable have the same

units as P', It Is defined as follows:

N1-A
~ ~ .,t% ~
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W = (Ao/Aos) ' / 2 P4 (E.7)

If this transformation is used, Eq. (E.6) becomes

Was - 0 , (E.8)

which has the desired form of Eq. (C.5)

We now obtain the solution of the problem of propagation of

small-signal waves through an inhomogeneous medium. The analogous

solution for a plane wave in a homogeneous fluid is as follows. Given the

boundary condition

P=g(t) =g(t') at x=O , (E.9)

the solution is

P =g(t') , (E. 1O)

where t' is given by Eq. (C. 1). For the problem of waves propagating in an

inhomogeneous medium, the boundary condition is

P=g(t) = g(t') at s =s o  (E.11)

Although the boundary condition does not have quite the same form as

Eq. (E.9), the form can be made exactly the same by defining a new

Independent variable. The new variable should not, however, alter the form

of Eq. (E.8). The desired transform is

Z=s-s o (E. 12)
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(Note that Z is not the same as z, the depth.) The boundary condition is now

P'=g(t)=g(t' ) at Z=O , (E.13)
where

t' = t-Z/c o  (E. 14)

Equation (E.8) now becomes

aWIZ = 0 (E. 15)

Equation (E. 15) is in the form of Eq. (C.5). Since Eq. (E. 13) is equivalent to

Eq. (E.9), the solution of the problem of propagation in an inhomogeneous

medium is, by analogy,

W = g(t') (E. 16)

where Z and W are defined in Eqs. (E. 12) and (E.7).

Thus the linear transport equation for an inhomogeneous fluid,

Eq. (C. 19), has been transformed Into an equation in the form of the

first-order plane wave equation for a homogeneous medium by making two

simple transformations: one on the dependent variable P', Eq. (E.7), and the

other on the independent variable s, Eq. (E. 12). The main reason for

introducing the W and Z transformations is to prepare the reader for

similar, but more complicated, transforms in Chapter 4.

'4l , ,- i .: z 11" -;''.Ik " , . ;-61--aI



CHAPTER 4

NONLINEAR 6EOMETRICAL ACOUSTICS

This chapter progresses in a fashion only slightly different from

that of the previous chapter. In Chapter 3 the linear lossless

hydrodynamics equations for an inhomogeneous fluid were combined to form

the corresponding wave equation. Next a Galilean transformation, based on

the use of the retarded time t', and the geometrical acoustics assumption

were introduced. The Galilean transformation was then applied to the wave

equation. In this chapter we start with the nonlinear lossless

hydrodynamics equations. They are not, however, combined to form a

nonlinear wave equation, but instead only partially combined. The Galilean

transformation and the geometrical acoustics assumption are then

Introduced. The hydrodynamics equations are transformed and then

combined to form a wave equation In the moving coordinate system. From

this point on, the development parallels that In Chapter 3. After the V2P'

term is dropped, the transformed wave quatlon Is separated Into the

elkonal equation and the transport equation. The equations are then

discussed. After simplification the transport equation is reduced to a
first-order (nonlinear) wave equation. This equation has the same form as
the first-order equation for plane waves of finite amplitude In a

62
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homogeneous medium. The reason we depart from the procedure followed In

Chapter 3 is that it is simpler to do so. It is easier to transform and

approximate the hydrodynamics equations and then combine them to obtain a

wave equation than vice versa.

In this chapter the standard geometrical acoustics assumption

must be broadened. In particular the acoustic ray paths are assumed to be

unaffected by the signal; that is, self-refraction does not occur. This

assumption means that acoustic ray path equations developed in the

previous chapter may be used even for signals of finite amplitude.

Specifically, the elkonal equation, Eq. (3-C. 18), and the equation developed in

Appendix A, Eq. (3-E.3), are still valid.

The level of approximation used in this chapter differs from that

used In the previous chapter. There the only second-order terms that were

considered were the Inhomogenelty terms. In the end even these terms

were found to be so small that they were neglected. Within the ranking

system of Chapter 2, this means that the results of the previous chapter

are valid to a first-order approximation only. In this chapter we are

specifically Interested In examining the effects of another type of

second-order term, nonlinear terms. In order to be consistent in our level

of approximation, terms due to both Inhomogenelty and nonlinearity are

Included throughout the entire derivation. Thus within the ranking system

of Chapter 2, the results obtained In this chapter are valid to a

second-order approximation.

As was mentioned in Chapter 1, no new material Is presented In

this chapter. The following derivation closely follows that of Pelinovsky,
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Petukhov, and Fridman (1979), whose work is in turn related to that of

Ostrovsky, Pelinovsky, and Fridman (1976). Both of the cited papers are,
however, terse. So much so in fact that it was decided that the full
derivation of nonlinear geometrical acoustics should be presented here.

That decision in turn led to the inclusion of much background material that

appears in Chapters 2 and 3.

A. Combining the Hudrodunamics EQuations

The lossless nonlinear hydrodynamics equations for an

inhomogeneous fluid were developed in Chapter 2. To combine the nonlinear

continuity and momentum equations, Eqs. (2-A8) and (2-B. 1), we take the

time derivative of continuity equation, the divergence of the momentum

equation, and substitute the former into the latter via the V-poau/at term.

Placing all nonlinear terms on the right-hand side, we obtain the following

equation:

a 2 p. +V-p, + Po = V. P(U V)u- VP'- (A.1)

To arrive at Eq. (AL1), we neglected several third-order terms: terms

Involving the Laplacian of environmental parameters such as V2Po, and

terms involving the products of gradients of environmental parameters

such as Vpo-VP o . It was also necessary to use the linear momentum

equation for a homogeneous fluid, Eq. (2-B.6), to simplify one of the

second-order terms.

11~
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The next step Is to eliminate p' and u from Eq. (AI ). To develop

some of the relations required to do this, we turn our attention to the

equation of state, Eq. (2-A. 1). The second-order Taylor series expansion of

the equation of state Is given In Eq. (2-B. 15). We now find the temporal

derivative of Eq. (2-B. 15) and the gradient of Eq. (2-A. 1):

aP 2 cp' v, fp I(aCol= co °-*co~j~

U- u.V faPI - (U -)X rap)AM2)

V C2 Vp+V V(r_VP -cP0 . - o P. (xo

In arriving at Eq. (A2), we have made use of the fact that the entropy and

salinity of a material particle remain constant; see Eqs. (2-B.2) and (2-B.4).

We have also used the definition of the small-signal sound speed,

Eq. (2-B.8).

To reduce the effort required to combine Eqs. (A 1), (A.2), and

W(A3), we make use of the Galilean transformation and geometrical

acoustics assumption, which are discussed at length In the previous

chapter.

B. Geometrical Acoustics Assumotion

The Galilean transformation and the geometrical acoustics



66

assumption are used in the previous chapter to reduce the linear wave

equation to the eikonal equation and a first-order wave equation that has

the form of Eq. (3-C.5). In this chapter we transform the ingredients of the

wave equation, that is, the nonlinear hydrodynamics equations for

intomogenenous fluids. The equations are then combined to form a wave

equation in the moving coordinate system.

Before the Galilean transformation is applied to the nonlinear

hydrodynamics equations, it Is useful to review the transformation as

applied to the equation for finite amplitude plane waves propagating

through a homogeneous medium. The equation is as follows (see, for

example, Blackstock 1972):

P't + coP' x- (/poCo 2) p'p = 0 , (B.)

where f Ie subscripts t and x indicate derivatives with respect to time and

distance, respectively, and p is the coefficient of nonlinearity

(see Appendix B). Equation (B. 1) is the nonlinear extension of Eq. (3-C.4).

Introduction of the retarded time variable for plane waves, Eq. (3-C. 1),

transforms Eq. (B. I) into the following:

PiX - (P/PoCo 3 ) PI31t = 0 (B.2)

Equation (B.2) is the equation for outgoing plane waves in the second

approximation. It is the nonlinear extension of Eq. (3-C.5). Equation (B.2)

has been analyzed extensively in the past and Its solution, called the

Earnshaw solution, is well known (see, for example, Blackstock 1972). Use

4~~~g w- 6
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of the Galilean transformation and the geometrical acoustics assumption

enables the nonlinear hydrodynamics equations to be put into the form of
Eq. (B.2); then the problem of propagation in an inhomogeneous medium will

have been solved.

The Galilean transformation Is now applied to Eqs. (A. I), (A2), and
(A.3). The new time variable t' is defined by Eq. (3-C.7). Expressions for
various spatial and temporal derivatives are given in Eqs. (3-C.9) through

(3-C.12). Since the Galilean transformation is a mathematical coordinate
transformation, it is unaffected by the inclusion of nonlinear terms.

Equation (A 1) becomes

a2p2 a 2 (V* VP') 2 L _ _t-  I Iarl + 2 1- at ,iv + V t,p ,I.Po at Iat'T  a t' - -t' - V2P'- P t

= * - a • o(U" V*,) Nu +P V,*LP (B3j (') (5.3)
at'PO at- Po at- atc

To arrive at Eq. (B.3), we have used the first-order expression for the

gradient, Eq. (3-C. 13), In nonlinear and Inhomogeneity terms. The spatial

and temporal derivatives of the equation of state, Eqs. (A,2) and (W3)

become, respectively,

I- - c - + 2cop - + (u. Vf)lat' 0t atP 0 x atf -~.XPPo at i-PIP.M -to

+ (U {€). atx A P (BA4
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VP0. VP' at,=cO VPO + VP at~

+ t +(v tv -v V*i ) *

+ (X 0 + vx' - V+ LX )tra1 (B.5)

Equations (B.4) and (B.5) are now rearranged In anticipation of

combining them with Eq. (B.3). First consider Eq. (BA4); take Its time Wt)

derivative, remembering that V* is Independent of tV. Use of the linear

momentum equation In the moving coordinate system, Eq. (3-C. 15), the

eikonal equation, Eq. (3-C. 18), and the linear equation of state, Eq. (2-B.9),

results In the following equation:

2I a2 . arap' I
___A --.D-I

I P. a- a (B.6)
pOC4 at' T 5t

Mutiplication of Eq. (5.5) by V*(p'/p0 ) places It in a more readily usable
form. The same relations used In arriving at Eq. (B.6), namely, Eqs. (3-C. 14),
(3-C.18), and (2-B.9) are then used to simplify the result. Rearranging and
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taking the derivative with respect to t yields

ap' V+ -VP0  VP0*V+ ap' I a ( a
at' Po Po  at- PoC4 at' at' / -.o

Equations (B.6) and (5.7) may be combined with Eq. (B.3). First

simplify the right-hand side of Eq. (B.3) using the same techniques used to

arrive at Eqs. (B.6) and (B.7). Substitution of Eqs. (B.6) and (B.7) into the

left-hand side of Eq. (B.3) leads to

I -jV~2\)a2 P'+ i2V+,VP +V 2+, VpV
C/2ats 2  at' P0  -

~where the coefficent of nonlinearity p is defined as follows:

2 1 P (B.9)

V. P p0

~Equation (B.8) is similar to the linear geometrical acoustics equation,
Eq. (3-C. 16). The main difference Is that Eq. (0.8) has a nonlinear term on

the right-hand side. Another difference Is that the left-hand side contains

an Inhomogenelty term, namely, (Vpo-V,/po)P'. The ancestor or this term

/ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ."3', ,- 5""'"- % - ',' % ? - '" . .
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is the third term in Eq. (3-B.3), there referred to as the density gradient

term. Neglected in Chapter 3 as being unimportant except for exceedingly

low frequencies, the density gradient term is retained here. In this chapter

we are specifically interested in examining finite amplitude effects. In

order to be consistent in our level of approximation, we maintain the

second-order terms due to both inhomogeneity and finite amplitude effects

throughout the entire derivation.

Finally, as in linear geometrical acoustics, we discard V2P'. It

was noted in the previous chapter that this term is associated with the

rate of change of the distortion. Since the distortion is assumed to occur

slowly, the rate of change of distortion must be very small and is therefore

neglected. The fInal form of the nonlinear geometrical acoustics equation

is as follows:

Io- V*12) 2p +  *V.VP'. (V2t ,  VP° Vt) P'

0  t /at'

C. Reduction of the Nonlinear Geometrical Acoustics Eouation

The techniques used In this section to reduce the nonlinear

geometrical acoustics equation are the same as those used In Chapter 3 to

reduce the linear geometrical acoustics equation. Since we assume that the

geometrical acoustics assumption Is valid In the case of finite amplitude

.... . .• . -
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waves, we may use the elkonal equation, Eq. (3-C. 18), to eliminate the first

two terms on the left-hand side of Eq. (B. 10). The remaining terms

constitute the transport equation which in this case is nonlinear. The

procedure used In Chapter 3 to reduce the transport equation to a

first-order wave equation is now repeated. In this case the first-order

wave equation has the form of Eq. (B.2). Noting that V* is Independent of

t', we Integrate the remaining terms In Eq. (B. 10) once with respect to t'.

The Integration constant must be zero In order to satisfy static conditions.

The result is

(VPt VP V .) .o 2p. P'

Use of the same equations used to reduce the linear transport equation,

namely Eqs. (3-E.3) and (3-E.4) and the elkonal equation, Eq. (3-C. 18), enables

Eq. (C. 1) to be rewritten as follows:

ap, P'+, co $ao0) 1 bPo P , aPi
S(L0  _ -P (C.2)

as 2Ao as co 2po as pc3 at'

The transport equation, Eq. (C.2), would be very similar to the

finite amplitude plane wave equation, Eq. (B.2), If the middle term could be

forced to vanish. To force Eq. (C.2) towards the form of Eq. (B.2), we

Introduce a transformation of the dependent variable:

WakP' (C.3)
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where k is a function (not a constant) to be defined in such a way that the

boundary condition at the source transforms conveniently, that is, W = P at

the source. Use of Eq. (C.3) in Eq. (C.2) yields

a + W CO a (Ao) 1 aPo _aki PW aW (C.4)
as 2Ao as \CO] 2po as k as kpoC3 at'

0|

Setting the middle term to zero yields a differential equation In k, which

may be cast in the form of a perfect differential

a[.n (Ao/pocok 2)]/aS = 0 (C.5)

The solution of Eq. (C.5) is

k (p0c0/A0)1/2 = constant (C.6)

We now choose the integration constant to suit the boundary conditions at

the source. Accordingly the definition of k is as follows:

k -(A 0 PosCos/AospoCo ) 1/ 2 ,(C.7)

where the density, the small-signal sound speed, and the ray tube area at

the source position are denoted pos, cos, and Aos, respectively. Thus Eq. (C.4)

may be written

aw PW aw(s k~~o3  ' = 0(C.8) .
as w 03e at

where
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W a (A0 poscosAopc 0)1/ P1 (C.9)

Equation (C.8) does not have quite the same form as Eq. (B.2). To
get the desired form, we Introduce another transformation, this time or the
Independent variable:

Z -Z(s) .(C. 10)

By the chain rule, we f Ind that Eq. (C.8) can be written as f ol lows:

* (aW/aZ)(aZ/as) - [(p2A05p~sc055)/(p52A~p~c05)J (p,/pOc5O3)WaW/at1 . (C. 11)

Putting

as = (p2A,O 5pCO5)/(p52A~pOC 5) (C. 12)

gives Eq. (C. I I) the f orm of Eq. (B. 2):

__ P------= 0 (C. 13)
p c~ 3 t'

Equation (C. 12) must now be solved subject to the condition that Z =0 when
s a so. The required solution is

z.JS( P 2os POcS )"ds (C. 14)

Z is called the distortion range variable. Equation (C. 13) has the desired
form.

ON
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In this section the simplification of the nonlinear geometrical

acoustics equation, Eq. (B. 10) is discussed. The approach taken to reduce the

equation is similar to that used in the previous chapter to simplify the

linear geometrical acoustics equation, Eq. (3-C. 17). Since self-refraction

is assumed to be negligible, the eikonal equation from linear geometrical

acoustics, Eq. (3-C.1 8), is used to simplify the nonlinear geometrical

acoustics equation. The transport equation is reduced via two

transformations: one on the dependent variable, the pressure, and the other

on the independent variable, the path length. The transformation of the

pressure corrects for the geometrical spreading of the wavefront; the

transformation of the path length corrects for the increase, or decrease, in

distance required for the waveform to distort a prescribed amount. In the

finite amplitude case, the transforms are Eqs. (C.9) and (C. 14). The

corresponding transforms in the linear case are Eqs. (3-E.7) and (3-E. 11 ),

respectively. Note that in the linear case the transform of the dependent

variable does not depend on the static density or sound speed. This is

because in the linear problem the level of approximation is only first order,

whereas in this chapter the level of approximation is consistently

maintained at second order.

D. The Solution

15 Now that the equation for propagation in an inhomogeneous

medium has been cast In the same form as the equation for plane wave in a

homogeneous medium, the solution may readily be obtained. The plane wave

equation, Eq. (B.2), is satisfied by the Earnshaw solution (see, for example,

9. gmism

LOWN
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Blackstock 1972): Given the boundary condition

P'=g(t)=g(t') at x=O (D.A)

the solution of Eq. (B.2) is

P' = g( ) , (0.2)
where

*t + pxg($)/c 02  (D.3)

For the case of an inhomogeneous medium the boundary condition is

P'=g(t)=g(t') at s=s o  . (D.4)

This transforms to

W=g(t') at Z = 0  (D.5)

The solution Is therefore the following equation

W-g() , (D.6)
where

S= t' + pZg($)/C 02  (D.7)

E. Simolification of the Distortion Range Variable Transformation

In this section the integral for the distortion range variable Z,

Eq. (C. 14), Is placed in the more compact form suggested by Morfey (1984a).

Since spreading waves in a mildly inhomogeneous medium are similar to

spherical spreading waves, Morfey's approach is to define the distortion

11,1
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range variable for an inhomogeneous medium in a form similar to that for a

spherically spreading wave in a homogeneous medium ( Z = so An (s/sO);

Blackstock 1966). Morfey's definition is as follows:

Z = so kn (sG/s o) , (E. 1)

where s is the path length, so is the reference path length, and 6 is the

dimensionless distance modification factor. As is shown below, G embodies

the effects of both ray tube geometry and ocean inhomogeneity upon the

finite amplitude distortion. If the quantity G is equal to 1, Eq. (E. I) reduces

to the form for a spherically spreading wave in a homogeneous ocean. As

Morfey (1984a) points out, if G Is greater than 1, finite amplitude distortion

Is greater than It would be in a homogeneous medium. The converse is true

If G is less than 1.

Starting with Eq. (C. 12), we strive to force it Into the form of

Eq. (E. 1). This is done by differentiating both equations with respect to the

path length s, and then equating the differentials. First, In terms of a new

thermodynamic variable a,

a p(poC05)- 1/ 2  , (E.2)

Eq. (C. 12) may be expressed as follows:

Z - sO (a/as)(Ao/Aos) "1/ 2 ds (E.3)

where a. is a evaluated at the source position. If Eq. (E.3) is differentiated

with respect to the the path length s, we are left with the integrand. We

II I'M II U II
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define a new variable Y(s) equal to the integrand:

Y(s) a (ax/a,)(A0/A0,)- 2  (E.4)

In the next chapter, we use a computer ray model based on the assumption
that the ocean is azimuthally symmetric. Using this assumption, we

substitute for the ratio of the ray tube areas, Ao/Aos, using a relation given

by Foreman (1983),

Ao/Ao5 = (rK/S 0 2) (cos 0/ cos 05) , (E.5)
where

- (3z/.0S), , (E.6)

r Is the radial range, z is the depth, and 9, is the launch angle. By defining a

new variable B(s), we see that

Y(s) = SoB(s) , (E.7)

where
B(s) m (r) -1/2 (cos 0/cos 0 )-/2 (a/a) (E.8)

Equation (C. 12) is now In the form of Eq. (E.7).

Now differentiate Eq. (E. I ) with respect to the path length s and

equate the result with Eq. (E.7). The differential of Eq. (E. I ) is as follows:

dZ/ds = (so/G) (dG/ds) + so/s (E.9)

If Eq. (E.7) is used, it may be shown that

1/G (dG/ds) = B(s) - I/s (E. lO)
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Solving Eq. (E. 10) for G, and defining a new variable F(s), we see that

6 = exp F(s) , (E.1 1)
where

F(s) = J0 f(s) ds , (E. 12)
and

f(s) -B(s) - I/s (E. 13)

Thus the distortion range variable may be expressed in the form

of Eq. (E. 1), and the quantity G may be evaluated using Eq. (E.1 1) if both the
ray path and the environment along the ray path are known. Thus G

embodies both the effects of the ray tube geometry (via the area In Eq. E.8)

and the environment (via a in Eq. E.8) on finite amplitude propagation.

As was mentioned in Chapter 2, the main difference between
linear and nonlinear hydrodynamics equations can be explained using the

mathematical term ranking system. To form the linear lossless

hydrodynamics equations for inhomogeneous fluids, we retain first-order

terms and one type of second-order terms, Inhomogeneity terms. To form

the nonlinear lossless hydrodynamics equations, we include one more set of
second-order terms: quadratic nonlinear terms. These terms govern the

finite amplitude behavior.



CHAPTER 5

NUMERICAL EVALUATION OF WAVEFORMS

A. Introduction

In this chapter we discuss a scheme for numerically Implementing

weak shock theory for a lossy Inhomogeneous ocean. Recall that in

Chapter 4 the transport equation for finite amplitude signals propagating

through an Inhomogeneous ocean was reduced, via two transforms, to the

form of that for plane waves propagating through a homogeneous ocean.

Pestorius (1973) developed an algorithm for numerically implementing

weak shock theory In the case of plane waves propagating through a

homogeneous medium in a pipe. We start this chapter by reviewing

Pestorius's algorithm. We then describe the differences between his

algorithm and the algorithm as It Is used In this work; related details of

the algorithm are examined. Next the testing of the algorithm is

discussed, and the results of the testing are presented. In connection with

the testing, typical results of the program are shown.

Pestorius's algorithm involves propagating an arbitrary finite

amplitude waveform a small distance using a numerical implementation of

weak shock theory. The waveform Is then Fourier transformed, and the

viscosity and tube wall effects Incurred over that small distance are

79
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accounted for in the frequency domain. The procedure is repeated until the

desired propagation distance has been reached. Note that by using

Pestorius's algorithm we may account for the loss terms neglected at the

beginning of the analytic development.

Several differences exist between the algorithm as set forth by

Pestorius and the modified algorithm used in this study. All the

differences result from the fact that Pestorius's algorithm was designed to

aid in the study of nonlinear propagation of plane waves through a

homogeneous medium in a pipe, whereas we are concerned with spreading

waves in an inhomogeneous ocean. Obviously the loss mechanisms

themselves are different; we account for the viscosity and relaxation of

seawater. From a computational point of view, two major differences are

(1) that our absorption coefficients change with position, and (2) that we

must calculate the distance over which the absorption acts. Other

differences are related to the choice of step size and starting conditions.

We recalculate the step size depending on the wave's current position,

whereas Pestorious used a constant step size. Pestorius started his

waveform at range zero; we must select a reference position.

A flowchart of the modified Pestorius algorithm is shown in

Fig. 5. 1. The modified Pestorius algorithm is implemented in the program

PLPROP.

I' %
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B. ADlication of Pestorius's Algorithm to Inhomogeneous Media

In this section we take a more detailed look at the modified

Pestorius algorithm. We first examine the weak shock subroutine

WAVPROP, and then focus our attention on the calculation of attenuation and

dispersion. The section closes with a description of some considerations in

the numerical evaluation such as choice of nondimensional variables, step

size, and starting range.

1. The Weak Shock Subroutine

The program PLPROP is centered around the weak shock

propagation subroutine WAVPROP. This subroutine uses the Earnshaw

solution and the relative shock arrival time equation (see, for example,

Blackstock 1972) in finite difference form (Pestorius 1973, Eqs. 4.2 and

4.3). From the Earnshaw solution which describes the distortion of the

continuous portion of the waveform, one finds that the delay time

associated with a given wavelet u is

t'[(k+ 1 )hI = t'(kh) - pCo-2U [t'(kh)]h , (B. 1)

where t'[(k+ I )h] gives the position of the wavelet after k+ I incremental

steps or size h, and t'(kh) gives the position after k steps. The delay time

for each wavelet Is calculated Individually because each wavelet

propagates with a different velocity. The finite difference form of the

relative shock arrival time equation gives the value of t' associated with a

particular shock, denoted t,', as follows:

ts [(k+ )hl t s'(kh) - Phc o
2(u2[kh,t s (kh)] + u,[kh,t, (kh)])/2, (B.2)

&M M R,
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where t('[(k+ 1 )h] is the value of ts' after k+ 1 steps of size h, and

UI. 2[kh,ts5 (kh)] is the value of particle velocity after k increments of size h.

These two equations, Eqs. (B. 1) and (B.2), are all that is required to describe

the propagation of weak discontinuities within finite amplitude waves.

Several disadvantages are associated with having to transform

back and forth between the time and frequency domains. These problems

are discussed in detail by Pestorius (1973, p. 91). We now address the most

significant of these problems. Equal time intervals between waveform

points are required by the fast Fourier transform (FFT) which is used to

transform the waveform into the frequency domain. After one step in the

the WAVPROP subroutine, however, the waveform points are no longer

spread at equal time intervals. To ensure that the points were equally

spread through time, Pestorius wrote the subroutine RESAMP. The

subroutine RESAMP unshocks the waveform by spreading the shock over at

least one time interval. Therein lies the problem; this does not correspond

with the physics of the situation. The effects of the problem are reduced

by having many data points closely spaced in time. As can be seen in the

later section on testing, the effects of this problem are small.

Another problem is aliasing (see, for example, Oppenheim and

Schafer 1975). The waveform's spectrum shows some degree of aliasing

because the resampled time waveform contains very high frequency

information. The spectra of the waveforms studied in this report have a

-6 dB/octave slope, and the effect of aliasing is therefore small. Also the

',' I I . - . ,. ,,. - . .• - , , % , .% ,'-' % '. .% -'.' ',7 "-O , -k-
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amount of attenuation increases with frequency and acts as a natural

anti-aliasing filter.

2. The ADDlication of Attenuation

In the introduction we mentioned that differences exist between

Pestorius's algorithm and the modified algorithm implemented in PLPROP.

It was also noted that the major differences center on the two components

required to calculate the attenuation: the absorption coefficients and the

distance over which they act. Since Pestorius's algorithm was intended for

plane waves, our modified version operates in units of equivalent plane

wave distance. Consequently the true distance must be calculated before

the attenuation can be applied. To obtain the true propagation distance we

use Eq. (4-E. 1). The more compact form of the distortion range variable

requires the calculation of the quantity G.

The numerical evaluation of G requires knowledge of both the

acoustic ray path and the environment along the ray path. Knowledge of the

environment is usually obtained by measurements made during the course of

an experiment. For our purposes we consulted tabulated data and chose

plots of temperature and salinity versus depth (hereafter referred to as

temperature and salinity profiles) typical of the North Atlantic Ocean. The

profiles are shown in Figs. 5.2 and 5.3. Once the temperature and salinity

profiles are known, the sound speed profile may be readily calculated

(Lovett 1978).

As was pointed out In Chapter 3, the acoustic ray paths depend

solely on the sound speed. In Chapter 4 it was noted that finite amplitude

waves follow the same ray paths as their small-signal counterparts. We

w 7,
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may therefore use a linear acoustic ray model to calculate the ray paths

for the finite amplitude case; the ray model used in this study is MEDUSA

(Foreman 1983). MEDUSA assumes an azimuthally symmetric environment

and is capable of calculating the ray paths even if the sound speed varies

with both depth and range. However, in order to keep our analysis simple,

we do not make use of this capability. We are therefore assuming that an

ocean may be modeled by a single sound speed profile, a stratified ocean.

The RAYFAN subroutine in MEDUSA was modified to output

information about the ray path. The information includes path length,

range, depth, cos 0, and . The angle 6 is defined in Fig. 3.2, and is defined

in Eq. (4-E.6). The cos 0 and values are required to calculate the ray tube

area ratio defined in Eq. (4-E.5). This ray path information is calculated

and stored by RAYFAN for each MEDUSA step. MEDUSA varies its step size in

order to maintain a constant degree of accuracy. It is therefore assumed{ that this step size is sufficiently small to accurately perform the

numerical integration outlined below.

Since both the environmental information and the ray path

information are available, the quantity G may be numerically evaluated.

Applying a second-order numerical integration scheme to Eq. (4-E. 11),

Morfey (1984a) obtained the following equation:

'i f(s) ds zh(f1 + f -1 )/2- h2(f - f;..)/12 (B.3)

where h Is the step size (s, - si_1) in arc length. The function f(s) is defined
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in Eq. (4-E.12), and f'(s) is the derivative of f(s) with respect to s. To

obtain the quantity G, we integrate along the ray path using Eq. (B.3) and

then substitute the resulting value into Eq. (4-E. 10). The program CALCG

implements Eq. (B.3) and calculates the quantity G at each of the MEDUSA

steps. Since CALCG requires ray trace data as an input, MEDUSA is run

first, and a file of ray trace data is stored. CALCG appends the value of G

for each step to the ray trace data file. The modified ray trace data file is

used as input to PLPROP. In this way PLPROP has access not only to the

environmental information along the ray path, but also to the quantity G.

PLPROP can therefore convert the distortion range variable into the true

distance which is required to evaluate the amount of attenuation associated

with a propagation step.

The second major difference between Pestorius's algorithm and

the modified algorithm implemented in PLPROP is that our absorption

coefficients vary along the propagation path whereas Pestorius's were

constant. The variation of the temperature and salinity causes a

corresponding variation in the absorption coefficients.

Empirical relations derived by Franqols and Garrision (1982) are

used to calculate the absorption coefficients. Franqois and Garrision

considered three sources of attenuation: viscosity and the relaxation

mechanisms associated with magnesium sulfate and boric acid. Each of the

relaxation mechanisms has a small amount of dispersion associated with It.

The dispersion Is calculated using Blackstock's technique (1985). The

dispersion due to each of the two relaxation mechanisms is added.

The environmental Information used as inputs to Franqols and
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Garrision's empirical relations was obtained from the temperature and

salinity profiles via a cubic T-spline (see, for example, Foreman 1983). For

the splines to be used, the depth at the position of interest must be known.

The depth is, however, only known at specific points along the ray path

since MEDUSA steps through range. To evaluate the depth for points in the

middle of a MEDUSA step, PLPROP uses a linear interpolation scheme.

Once the true propagation distance and the absorption coefficients

have been calculated, the attenuation and dispersion may be applied to the

waveform. However, PLPROP applies the attenuation due to viscosity only

when the waveform contains no shocks. The reason for this is that weak

shock theory implicitly accounts for most of the viscous attenuation when

shocks are present. Thus if PLPROP were to apply viscous attenuation to a

waveform containing shocks, the viscous attenuation would have been

accounted for twice, once by the weak shock theory and once by PLPROP. To

separate the two cases, PLPROP measures the distance the wave propagates

both with and without shocks, and then applies absorption accordingly.

The reason why the losses associated with weak shock theory are

assumed to be due to viscosity is as follows: In weak shock theory the

losses are assumed to be concentrated at the shock. Since the shock

-* contains mostly high fretuency Information, and the attenuation mechanism

which is dominant at high frequencies is viscosity, viscosity alone must be
responsible for the losses at the shock. Other attenuation mechanisms,

such as relaxation, do not attenuate the shock at a rate sufficient to stop

the shock from becoming multivalued.
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3. Other Considerations

PLPROP works with nondimensionalized time and distance

variables. The time is nondimensionalized by dividing it by a time tc

characteristic of the input waveform. For example, in the case of a weak

shock with an exponentially decaying tail, a convenient characteristic time

Is the initial lie decay time. The characteristic distance used to

nondimensionalize the distortion range variable is defined as follows:

R, = Cotc/pe (B.4)

The definition for R. presented in Eq. (B.4) is preferred over Cot c alone

because Eq. (B.4) represents a distance over which the waveform would

undergo a significant amount of distortion. In the case of a sinusoidal

wave, R. is the shock formation distance. PLPROP propagates the waveform

in steps of nondimensional distance sigma a, defined as follows:

a = V/R . (1.5)

Several factors must be considered In choosing PLPROP's step

size, denoted Ao. Pestorius (1973) tried a variety of step sizes and settled

on the value of 0.01. Pestorius also noted that several, typically 10, of the

0.01 AO steps should be taken before the attenuation and dispersion are

applied. This reduces the number of FFTs, and hence, the effect of the

errors associated with the transformations between the time and

frequency domain.

Step size considerations for the modified Pestorlus algorithm
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implemented in PLPROP are somewhat different than those used In the

original algorithm. One of the consequences of Eq. (4-E. 1) is that the true

distance corresponding to 0.01 Ao increases with the distance the wave has

propagated. Close to the source, where the signal is stronger and finite

amplitude effects are important, ten 0.01 Aa steps may correspond to a

very small distance. To calculate the number of 0.01 Ao steps to take,

PLPROP examines the absorption coefficient, calculated in dB/m, from the

center frequency cell of the FFT. The magnitude of the reciprocal of this

coefficent gives, for that particular frequency, the propagation distance

required for a 1 dB drop in the amplitude. The waveform is then propagated

the number of 0.01 Ao steps corresponding to the 1 dB drop distance. This

differs from the fixed value of ten 0.01 AO steps used by Pestorius.

Compared with Pestorius's original approach, the number of applications of

absorption near the beginning of the ray path is reduced. This corresponds

to the decreased role of absorption.

On the other hand, the number of 0.01 Aa steps is never permitted

to go below 10. When the wave is far from the source, the 1 dB drop

distance may correspond to less than one 0.01 Aa step. Thus to combat the

errors associated with transforming between the time and frequency

domains, the number of 0.01 Ao steps between applications of absorption is

fixed at 10.

Another difference between the algorithm as developed by

Pestorlus and the algorithm used in PLPROP is the requirement for a

starting, or reference, range. Because Pestorlus dealt solely with plane

waves, his starting range was always zero. The reference range used In4
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PLPROP was developed by rorfey (1984b), who chose the reference range to

be equal to the characteristic distance R.. Morfey formed the ratio of the

nondimensional shock pressure, AP/poc02, to the nondimensional time

constant, Cotc/R. He observed that the ratio is approximately equal to I/p if

the nondimensional shock pressure is 0.06 and the range is R.. The value of

0.06 for the ratio AP/poC02 corresponds to the upper limit on weak shock

theory (Pestorius and Williams 1974). Consequentially, Morfey chose the

model's starting conditions to correspond to a nondimensional pressure of

0.06 and a starting range of R..

Another feature of considerable importance is PLPROP's ability to

selectively Include the physical mechanisms that affect the propagation.

The finite amplitude effects may be switched off altogether or remain In

effect only until the wave reaches a certain range. Viscosity and

relaxation may be switched on individually. The dispersion due to

relaxation may be Included or not. The absorption coefficients may be

calculated from the local environment or may be based on some average

value. The ability to swItch the mechanisms on or of f permits each of them

to be examined Individually.

C. Verification of the Algorithm

In this section we present some of the results of the tests

performed to verify the accuracy of the modified Pestorius algorithm. The

first program discussed Is CALCG which calculates the quantity G. The

second program discussed Is PLPROP. In each case the numerical results of

the programs are compared to results obtained from analytic solutions.
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The percent error in the numerical results are calculated.

As mentioned earlier in this chapter, the quantity G is calculated

using Eq. (B.3). The program CALCG evaluates G from ray path information

provided by the ray tracing program MEDUSA. To verify the accuracy of

CALCG, we compare its results to the known analytic expression for G for

the case of a constant gradient sound speed profle (lorfey 1984a). Morfey

has shown that, in this case, G is related to 8 by the following equation:

GOO~ , 0 sine0- sin_%\f Itan (r(/4 + 0/2) )sine0 (.1Go,(8) = (0- 0o) cos0) ktan (n/4+ 00/2)) (D)

where 0 is the angle between the ray path and the horizontal, and 0o is the

angle 0 at the reference path length. In our test the dependence of sound

speed on depth was as follows:

co = 1462 + 0.01762z , (D-2)

where z is the depth in meters, and co is the sound speed in m/s. The sound

speed was assumed to be constant with range. The source was assumed to

be at a depth of 2500 m, and the launch angle was 22.50. The results of

Eq. (D. 1), the numerical result of CALCG, and the percent error are

presented in Table 5. 1. As can be seen from the table, the error is

consistently below 0.01 %.

In an effort to check the accuracy of PLPROP, we compared the

program's results with results obtained from the analytical expressions
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developed in Appendix C. The expressions in the appendix are for a weak

shock with an exponentially decaying tail which is spreading spherically

through a homogeneous medium. The expressions give the

nondimensionalized peak pressure, the nondimensional I/e decay time, and

the nondimensional relative shock arrival time. The peak pressure is

normalized to the initial peak pressure. The lie decay time is normalized

to the initial I /e decay time. The shock arrival time is measured relative

to the travel time calculated assuming the small-signal sound speed co. To

make the comparison, we simulate a homogeneous ocean by giving MEDUSA a

constant sound speed profile; the resulting acoustic ray paths are straight

lines. If one of these ray paths is used as input to PLPROP, and the

attenuation in PLPROP is "turned off', PLPROP's results should be the same

as those for a spherically spreading wave in a lossless homogeneous ocean.

A comparison of the analytic and numerical results is presented in

Table 5.2. It is seen that the error is generally in the range ±0.25 %.

PLPROP plots the time waveforms and their corresponding energy

spectra. The time waveforms and energy spectra corresponding to the

values of the "numerical" column in Table 5.2 are shown in Figs. 5.4 and 5.5,
respectively. The horizontal axis in Fig. 5.4 is in units of nondimensional

retarded time. The vertical axis is the nondimensional pressure. The

pressure shown here and that listed in Table 5.2 is the equivalent plane

wave pressure, that is, the purely geometrical effect of spherical

spreading has been removed. The plots of the time waveforms from

different positions along the ray path have been superimposed.

p ]7
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The energy spectra In Fig. 5.5 are also superimposed. The

horizontal and vertical axis in Fig. 5.5 are frequency in Hz and energy

spectrum level In dB// I J/m2-Hz. The energy spectrum levels correspond

to the energy in the equivalent plane wave; that Is, the effects of spherical

spreading are removed. The frequency scale Is correct as shown. The

different spectra correspond to the waveforms from different points along

the ray path.

The above results indicate that the weak shock propagation in the

modified Pestorius algorithm works to a high degree of accuracy, at least

in the case when the Inhomogeneous medium Is made to appear homogeneous.

The other main component in the algorithm Is the application of absorption.

It was tested by (1) checking as to whether the absorption coefficients are

correct, and (2) propagating a sawtooth wave with finite amplitude effects

switched off and the absorption switched on. The resulting waveform was

compared with that obtained from a separate calculation based on the

Fourier series solution of the sawtooth wave. Each of the Fourier

coefficients was attenuated and phase shifted to simulate the application

of attenuation and dispersion by PLPROP. The results of both calculations,

the Fourier series summation and PLPROP, were in very close agreement.

No straightforward way of verifying the accuracy of the

combination of finite amplitude effects and absorption exists. However,

since the two major components of the program work well separately, it is

reasonable to assume that they will work well together. The computer

program PLPROP Is presented In Appendix D.

m I -11



CHAPTER 6

RESULTS

A. Introduction
In this chapter the effects or nonlinear distortion and ordinary

attenuation and dispersion on the propagation of signals In an

Inhomogeneous ocean are Investigated. The Investigation Is conducted using

the numerical algorithm discussed In the previous chapter. Some of the

results have been reported previously (Cotaras, riorfey, and Blackstock

1984). The signals examined are transients, specifically a weak shock with

an exponentially decaying tall (hereafter referred to as an exponential

pulse) and a more realistic explosion waveform containing one bubble pulse.

First the ocean environment Is discussed, and two specific ray paths are

selected. Then the specific waveforms used are discussed and presented

with their energy spectra. Next the effect or Inhomogeneity on nonlinear

distortion is examined. The effect is Investigated by propagating an

exponential pulse through a lossless stratified ocean and comparing the

result with that obtained for a lossless homogeneous ocean. The combined

and Individual effects of nonlinear propagation and ordinary attenuation and

100
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dispersion are then examined. These effects are Investigated by

propagating the same exponential pulse through a stratified ocean and

comparing the results obtained considering ordinary attenuation and

dispersion only, finite amplitude effects only, and the combination of the

two. We also briefly examine, In terms of the arrival time of the peak

pressure, the role of dispersion In long range propagation. Lastly we try to

answer the question, "to what distance are finite amplitude effects

Important?" This is done by comparing and contrasting the energy

spectrum obtained considering finite amplitude effects over the entire

propagation path with those obtained by neglecting finite amplitude effects

after certain distances, namely 150 m and 1100 m.

B. Design of the Numerical Exoeriment

1.Ray Pa

The ocean environment and the ray paths selected are shown In

Fig. 6. 1. The horizontal axis is the range In kin, and the vertical axis Is the

depth In m. As mentioned In Chapter 5 the ocean Is assumed to be

stratified. The salinity and temperature profiles used to calculate the

sound speed profIle, shown In Fig. 6. 1, are the same ones employed In

Chapter 5; see Figs. 5.2 and 5.3. The sound speed profile Is shown at both

0 km and 75 kin, thereby Indicating that the sound speed does not vary with

range. The two ray paths shown start at different depths, 300 m and

4300 m, but have the same launch angle, 80 down from the horizontal. (The

1V
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angle appears to be greater than 80 because the horizontal and vertical axes

have different scales.)

The two particular source depths were selected for the following,

reasons. The shallow source depth was chosen because ocean acoustic

measurements are commonly made at this depth. The deep source depth was

chosen primarily to permit the study or an explosion waveform that

Includes the first bubble pulse. More details are given In the next section.

The criteria for selecting the ray path from each of the two

depths are the same. Because reflections and caustics cannot be

accommodated by our computer algorithm, they must be avoided. At the

same time, a long ray path is needed In order to determine whether

nonlinear distortion continues to accumulate after long propagation

distances. The rays selected travel a moderate distance, 50 to 70 kin,
without Interacting with the surface or the bottom and without passing

through a caustic. Shown In Figs. 6.2 and 6.3 are the families of rays from

which the rays shown In Fig. 6.1 were picked. In Fig. 6.2 (the shallow

source) the ray launch angles vary in 0.50 Increments from 0 to 150

measured down from the horizontal. The ray selected, noted In the figure,

avoids the caustic region that starts at about 33 km on the upper edge or

the family of rays. The deep source family (Fig. 6.3) has ray launch angles

that vary In 0.50 increments from -50 to 100. The ray paths all reflect from

the surface before passing through a caustic at about 62 km. The ray

selected from this family Is noted. From now on the ray path starting at

"p.
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the shallow source is referred to, for short, as the shallow path; similarly

the other path is referred to as the deep path.

2. Sgnals

The basic criteria for selecting the waveforms to study are as

follows: (1) They must be waveforms for which finite amplitude effects

are important. (2) They must be as realistic as possible, and yet short

enough to be properly sampled by our computer program. The signals

examined are transient pulses similar to those caused by underwater

explosions. The explosives commonly used in long range propagation studies

generate the high sound pressure levels at which nonlinear effects play an

important role in propagation. It is rare that a long range propagation

experiment is conducted using an intense periodic source. For this reason

we exclude the study of periodic signals.

With regard to realism of the waveforms used, It Is noted that

Wakeley (1977) developed an empirical relation for an underwater explosion

waveform which Includes the first four bubble pulses. The waveform has

been shown to give a close fit to experimental data; It Is, however,

somewhat complicated. Morfey (1985) developed a simplified version of

Wakeley's waveform which Is shorter In time duration and Is therefore

more suitable for use In our computer program. (The simplified Wakeley

waveform Is shown on p. 11.) The approach taken by Morfey was to (1)

truncate the Wakeley waveform at the zero crossing after the first bubble

pulse and (2) remove the explicit dependence on the charge weight by I
selecting a nondimensional time base that Is related to the charge weight.

- - .'. . - ****'. -
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As the characteristic time used for nondimensionalization, Iorfey picked

the Initial I /e decay time. He found that (Morfey 1984b) use of the

empirical scaling law for the peak pressure (Arons 1954) and the starting

conditions mentioned in Chapter 5 (nondimensional shock pressure of 0.06

at a range of R.) leads to the following expression for the li/e decay time:

Om -59 W /3  , (6.1)

where Om is the l/e decay time in Vs and W is the equivalent TNT charge

weight In kg. Equation (6.1) connects the initial l/e decay time of the pulse

with the charge weight. By simplifying Wakeley's expression so that it

Includes only one bubble pulse and by using Om to calculate the

nondimensional time T, Morfey (1985) obtained the following expression:

P - exp(-T) + O.16exp[-(T - TB)/Tl ] - (rr/2TB)(l *0.16T1)Isin(nT/T)I ,(6.2)

where To and T, are the nondimensional bubble pulse period and bubble pulse

time constant, respectively. The bubble pulse period is the time between

the initial pulse and the bubble pulse. The bubble pulse time constant is

related to the rate of rise and decay of the bubble pulse. The bubble pulse

period and time constant are defined in the following expressions:

T5 = 3 5 6 0 0 (z + 10.1)-5/6 (6.4)

and
T1=165(z+I0.I) "1 2  , (6.5)

where z Is the depth In m.
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It can be seen from Eq. (6.4) that, for large depths, the bubble

pulse period of an explosion is approximately proportional to the inverse of

the depth. Accordingly the explosion waveform from a source at 300 m has

a long bubble pulse period, almost 300 times the Initial I /e decay time. In

order to maintain the accuracy stated In Chapter 5, our computer program

requires at least 32 points In the Initial I/e decay time. Thus 9600 points

are required If the shallow source explosion waveform is to include the

first bubble pulse. The total number of points In our time waveform is,

however, restricted to 4096 by computer space limitations. Hence we

cannot Include the bubble pulse In the explosion waveform from the shallow

source. A much deeper source, however, has the shorter bubble pulse

period which fits within our limitations. We chose our second source depth

to be 4300 m.

A simpler waveform is more appropriate for the shallow path

since the details of the more complicated waveform cannot be Included.

Shown In Fig. 6.4 are the time waveforms and corresponding energy spectra

of the modified Wakeley waveform for the 300 m source (Fig. 6.4a) and the

exponential pulse (Fig. 6.4b). Both waveforms correspond to a 0.818 kg TNT

explosion at the reference range of 0.4 m. The reference range is

calculated using Eq. (5-B.4) which assumes a peak pressure level of 282.6

dB// I iPa. The Initial I/e decay time Is 55 is. Since the time waveforms

and frequency spectra of Figs. 6.4(a) and 6.4(b) are very similar, It was

decided that the simpler signal, the exponential pulse Fig. 6.4(b), would be

the signal used for the shallow path.

.71
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Shown In Figs. 6.5(a) and 6.5(b) are the modified Wakeley

waveforms and corresponding energy spectra for the 0.818 kg and 22.7 kg

TNT explosions at a depth of 4300 m. The waveforms are calculated at the

reference ranges of 0.4 m and 1. 1 m, respectively. Because the explicit

dependence on charge weight has been removed from the expression for the

explosion waveform, Eq. (6.2), the nondimenslonal time waveforms are

Identical. If the time waveforms had been plotted In terms of dimensional

units, as are the frequency spectra, the waveforms would appear different.

The larger explosion would have a longer bubble pulse period. This can be

seen by noting that the 22.7 kg TNT explosion energy spectrum is shifted

down in frequency In comparison to the other spectrum. The frequency

shift Is caused by the Increase In charge weight. Since ordinary absorption

and finite amplitude effects scale differently with frequency, It is

expected that, after the signals propagate a moderate distance, their

spectral shapes will be different. It is for this reason that two different

charge weights are considered.

C. Effect of Medlum Inhomogeneltu on Nonllnearltu

The effect of ocean InhomogeneIty upon finIte amplItude

propagation Is small. This conclusion was first quantitatively

demonstrated by Morfey (1984a). To understand why the effect Is small,

recall the definition of the distortion range variable, Eq. (4-E. 1). All the

effects of ocean Inhomogeneity are embodied In the nondimenslonal

parameter 6. The value of 6 for the shallow path is approximately 3.

J~S.
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Physically this means that to undergo the same amount of distortion in a

homogeneous ocean, the signal would have to propagate three times as far.

This Is not, however, a large enhancement because, as can be seen from

Eq. (4-E. 1), the distortion range variable--and hence the finite amplitude

effects--are a function of the logarithm of the distance propagated.

As an example of how small an Influence Inhomogenelty has,

consider a signal propagating along the shallow path. If the reference path

length is I m, the path length is 20 kin, and the value of 6 is 3, the

distortion range variable Is 11. If the ocean Is homogeneous, the distortion

range variable for a 20 km path and a 1 m reference range Is 9.9. Since the

amount of finite amplitude distortion is proportional to the distortion

range variable, the Inhomogeneity enhances the distortion by only I I% over

the 20 km path length.

The enhancement of finite amplitude effects along the deep path Is

even smaller. There the maximum value of 6 Is approximately 1. Hence In

terms of nonlinear distortion there Is effectively no difference between

propagating through a homogeneous ocean and propagating along the deep

path through an Inhomogeneous ocean. It Is therefore concluded that the

effect of Inhomogenelty upon nonlinear distortion Is small.

We now quantitatively demonstrate the small effect of

Inhomogenelty on distortion by comparing the waveform for a homogeneous

ocean with that for an Inhomogeneous ocean; examine Fig. 6.6. The initial

waveform Is the exponential pulse shown In Fig. 6.4(b) but on an expanded

time scale. The other waveforms result from (1) propagating the signal

5- *.' A ~* 5 ~ .~- W .~I
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58.1 km along the shallow path through a lossless ocean and (2) propagating

the same signal to the same distance through a lossless homogeneous ocean.

Note that the strong effect of geometrical spreading has been suppressed

by plotting the transformed pressure given In Eq. (4-C.9)

nondimensionalized by its initial value. The differences in amplitude and

relative shock arrival time between the two resultant waveforms are

clearly small (recall that In 6 is small compared to In (S/So)).

On the other hand nonlinear effects are still Important; reexamine

Fig. 6.6. The shock arrival time is approximately 165 i s (three times the

initial lie decay time) in advance of the linear theory prediction, and the

peak pressure is approximately 1/3 of its original value. The nonlinear

distortion may therefore be thought of as "stretching" the initial signal as

well as attenuating It. Note that the "lossless ocean" Is not really lossless

because the nonlinear distortion takes account of losses at the shock.

However, losses due to the medium which affect both continuous and

discontinuous waves, such as relaxation, are not explicitly accounted for;

hence the term lossless ocean.

D. The Combined Effects of NonlinearItu and Absorotion

Throughout the propagation of a finite amplitude wave, the effects

of both nonlinearity and ordinary attenuation and dispersion are at play. To

more clearly examine the role of each in the propagation process, we first

examine them separately, and then together. Figure 6.7 shows four

waveforms, one of which Is the Initial waveform, the exponential pulse of
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Fig. 6.4(b) on an expanded time scale. The others are the resulting

waveforms after propagating 58.1 km along the shallow path considering

(1) ordinary attenuation and dispersion only, (2) finite amplitude effects

only, and (3) both finite amplitude effects and ordinary attenuation and

dispersion. It Is clear from the figure that by Itself neither finite

amplitude effects nor ordinary absorption can correctly account for the

shape of the resulting waveform; both are required. The finite amplitude

effects attenuate the wave while causing it to try to form, or to maintain,

a shock. Ordinary absorption attenuates the wave, thus causing the wave to

become rounded.

It Is Interesting to examine the effect of dispersion on the

position of the peak pressure. Consider the propagation, neglecting finite

amplitude effects, of the exponential pulse along the shallow path. The

waveforms In Figs. 6.8(a) and 6.8(b) are obtained at various positions along

the shallow path, from the reference range 0.4 m out to 58.1 km. The

calculations were made first without dispersion (Fig. 6.8a), and then with

dispersion (Fig. 6.8b). At longer ranges the effect of dispersion Is clear; It

shifts the waveform forward. In Fig. 6.8(a) the peak pressure continuously

moves backward; I.e., the effective propagation speed of the peak Is less

than co. The same is true of the waveforms in Fig. 6.8(b) for distances up to

8.6 km, but beyond that distance dispersion pulls the peak forward. By the

time the wave has reached the maximum distance of 58.1 kin, the shift of

the peak pressure due to dispersion Is approximately 0.8 of the initial lI/e

. .. M . = ".- . . .
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decay time. This would be a significant amount of time if one were trying

to add signals coherently.

In Fig. 6.9 we again examine the effect of dispersion, but this time

finite amplitude effects are also Included. In this case the waveforms at

the lower ranges are resolved. Notice that In Fig. 6.9(a) the peak pressure

moves forward until a range of 3300 m is reached and then moves

backwards. In Fig. 6.9(b), however, the forward movement of the the peak

pressure is monotonic. The forward movement is due first to finite

amplitude efferts and In the end due to dispersion.

Figure 6.9(a) enables us to examine the combined effects of

nonlinearity and attenuation. As noted above, the peak pressure In

Fig. 6.9(a) stops moving forward as the signal propagates beyond 3300 m.

One might Interpret this to Indicate a change in the Importance of finite

amplitude effects relative to attenuation. From 3300 m on, ordinary

attenuation Is the dominant mechanism of diminution, whereas for ranges

less than 3300 m finite amplitude effects are the principal mechanism. It

is noted, however, that the amount of attenuation beyond 3300 m Indicated

In Fig. 6.8(a) is less than that over the corresponding distance in Fig. 6.9(a).

It Is therefore concluded that, even though finite amplitude effects are not

dominant beyond 3300 m, they are still noticeable. Although the transition

point, 3300 m, applies only to this particular example, one can expect a

similar behavior for other signals of similar initial shape.
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E. To What Distance are Finite Amplitude Effects ImDortant?

In this section we find that for a specific frequency range and

source strength, finite amplitude effects may be neglected beyond a certain

distance. Ordinary absorption appears to dominate the propagation beyond

that distance. One explanation for the importance of ordinary absorption

over finite amplitude effects is that the effects of ordinary absorption

increase as exp(-cxs), whereas most finite amplitude effects depend on a

(Eq. 5-B.5) which Is proportional to In (S/So).

To answer quantitatively the question posed In the heading of this

section, we conducted a numerical experiment involving two different

explosion pulses. The first is for a 0.818 kg TNT explosion at a depth of

4300 m, and the second, a 22.7 kg TNT explosion at the same depth. The

source waveforms and their respective spectra are shown In Figs. 6.5(a)

and 6.5(b). The procedure used Is a simple one. The explosion waves are

numerically propagated to a distance of 23 km along the deep path

accounting for attenuation and dispersion over the entire 23 km and

accounting for nonlinear effects as indicated below:

Case A: nonlinear effects neglected entirely,

Case B: nonlinear effects Included only up to range 150 m,

Case C: nonlinear effects Included only up to range 1100 m,

Case D: nonlinear effects Included for the entire 23 km.

Case D Is used as the basis of comparison.

Because the effective duration of the explosion pulses In Fig. 6.5

Is much greater than that of the simple exponential pulses (compare the
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waveforms of Fig. 6.5 with the Initial waveform of F ig 6 6), time waveform

resolution of the sort shown In Figs 6 6 through 6 9 is not possible

Interesting results may, however, be found by comparing the spectra of the

signals. The results are therefore presented in the form of energy

spectrum plots. A few time waveforms are shown for clarity in

Interpreting changes In spectra.

I. The 0.818 kg TNT ExDlosion Results

The results of the numerical experiment Involving the 0.818 kg

TNT explosive are presented In Figs. 6. 10 through 6.12. The dotted curve In

Fig. 6.10 Is the Initial energy spectrum at the reference range, 0.4 m. The

dashed curve Is the energy spectrum calculated neglecting finite amplitude

effects over the entire 23 km, Case A. The solid curve In the figures Is the

energy spectrum calculated accounting for finite amplitude effects over

the entire path, Case D. Figure 6.11 shows a comparison of Cases B and D

and Fig. 6.12, Cases C and D.

We start our discussion by examining the behavior of the solid

curve (Case D) and the dashed curve (Case A) In Fig. 6. 10. Note that, as for

the time waveforms, the effect of geometric spreading has been removed.

The differences between the two curves are Itemized below.

(a) At the high frequency end (above 15 kHz) the solid curve Is higher.

(b) In the middle range (approximately 1.5 - 15 kHz) the dashed curve is

higher.

(c) At the low frequency end (below 1.5 kHz) the envelopes of the two

curves are about the same.
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(d) As the frequency decreases from about 400 Hz, the solid curve

rises above the dashed curve.

(e) In the low frequency region the spectral peaks of the solid curve

occur at slightly lower frequencies than the peaks of the dashed

curve.

The differences cited above can be explained In terms or the

nonlinear distortion of the wave. Compare the two time waveforms

Inserts. Difference (a) Is probably caused by the steepening of the

compression part of the bubble pulse. Difference (b) Is probably due to the

Increase In the decay time of the first peak (as the shock pulls ahead of the

first zero). Differences (d) and (e) are probably due to the stretching of the

time Interval between the Initial peak and the bubble pulse peak.

We now examine the Case B and Case C spectra. In the following

discussion of Figs. 6.1 1 and 6.12 we attempt to answer the question, "to

what distance are finite amplitude effects Important?" The Inclusion of

finite amplitude effects up to 150 m (Fig. 6.11 ) gives a 23 km spectrum that

follows the Case D spectrum up to about 6 kHz. Less important effects are

seen at the very low frequencies. Figure 6.12 shows that the Case C

spectrum also follows the Case D spectrum up to about 6 kHz, although It

does so more closely than the Case B spectrum. The tentative conclusion,

namely that nonlinear effects may be Ignored beyond a certain distance,

depends on the frequency range in which one Is Interested.
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2. The 22.7 kg TNT Explosion Results

We now turn our attention to the case of a 22.7 kg TNT explosion.

As can be seen In Figs. 6.5(a) and 6.5(b), the energy spectra of the two

explosions are very similar except that the larger explosion has an overall

higher spectrum level and is shifted down in frequency. To avoid peak

pressures too high to be handled correctly by weak shock theory, we

Increase our reference range to 1.1 m (for the 22.7 kg pulse only), thereby

making the peak pressure at the reference range the same for both the

0.818 kg and the 22.7 kg TNT explosion (282.6 dB//1 IlPa). Because of the

frequency shift of the spectrum, the nonlinear distortion of the two pulses

Is much the same (finite amplitude effects scale with frequency). The only

real difference Is the effect of attenuation, which should be less for the

pulse from the larger charge.

The results in the form of energy spectra are presented In

Figs. 6.13 through 6.15. The initial spectrum is shown as the dotted curve

In Fig. 6.13. In this figure the dashed curve is the energy spectrum

calculated neglecting finite amplitude effects entirely, Case A. The solid

curve In Figs. 6.13 through 6.15 Is the 23 km energy spectrum calculated

accounting for finite amplitude effects over the entire path, Case D. In

Fig. 6.14 the dashed curve is the spectrum for Case B; in Fig. 6.15 the dashed

curve is the spectrum for Case C.

The general observations made of the solid and dashed curves In

Fig. 6.13 are the same as those made of Fig. 6. 10, except that the
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frequencies cited previously are higher. The differences between the solid

and dashed curves of Fig. 6.13 may be summarized as follows.

(a) Above approximately 10 kHz the solid curve Is higher.

(b) From about 500 Hz to 10 kHz the dashed line Is higher.

(c) The solid curve Is slightly higher from 50 to 500 Hz.

(d) Over the same frequency range as (c) the spectral peaks of the

solid curve exhibit a slight downward shift.

The physical explanations for these differences are the same as those for

the differences witnessed In Fig. 6. 10. The nonlinear steepening of the

compressional part of the bubble pulse accounts for difference (a).

Difference (b) Is due to the Increase In the decay time of the first peak.

Differences (c) and (d) are due to the slight Increase In the period between

the initial pulse and the bubble pulse.

We now address the question, "to what distance are finite

amplitude effects Importantr As In the case of the 0.818 kg explosion, the

answer may be obtained by comparing the Case B and Case C energy spectra

with the Case D spectrum. The Case B and Case C spectra (Figs. 6.14 and

6.15, respectively) follow the Case D spectrum closely for frequencies

below 4 kHz, although the Case C spectrum more closely duplicates that of

the Case D. It Is therefore concluded that the finite amplitude effects can

be neglected after a certain distance, and that the distance depends on both

frequency and source strength. Since the differences between the Case C

and Case D spectra are approximately the same for both the 0.818 kg and

C
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22.7 kg TNT explosions, it is also concluded that the differences between

the two spectra due to absorption are small.

In summary It Is noted that the prevailing sentiment that

"nonlinear effects are Important only close to the source" is confirmed

quantitatively. Beyond a distance that depends on frequency and charge

weight, nonlinear effects may be neglected. Notice, however, that the

calculations are for rays that encounter neither reflections nor caustics.

!!!-I



CHAPTER 7

SUMMARY

In this report the propagation of finite amplitude signals through

an inhomogeneous ocean Is investigated both analytically and numerically.

The theory used Is that of nonlinear geometrical acoustics. The amplitude

of the signal Is assumed to be small enough that self-refraction may be

neglected. Another assumption Is that the acoustic field consists only of

outgoing waves. The effects of reflections and focusing are not considered.

Losses are accounted for directly In the numerical routine; the analytic

work is performed neglecting all losses except those at the shock. In the

numerical study the ocean Is assumed to be stratified, whereas the analytic

work is for a fully Inhomogeneous ocean In which temperature, salinity, and

density vary with position.

The analysis starts with the presentation of a scheme for ranking

the terms In the hydrodynamics equations according to their degree of

smallness. The ranking scheme Is then used to simplify the hydrodynamics

equations for lossless Inhomogeneous fluids for (1) small-signal and
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(2) finite amplitude waves. From these simplified equations the theories of

linear and nonlinear geometrical acoustics are developed. The elkonal

equation is obtained and found to be the same for both small-signal and

finite amplitude waves. The transport equation is, however, different for

the two cases. An equation for the ray paths is derived from the elkonal

equation and the relations of vector calculus. in the case of a constant

gradient sound speed profile, the ray paths are found to be circular arcs.

The two transport equations are found to be equivalent to the first-order

progressive wave equations for small-signal and finite amplitude waves,

respectively. All the analysis is carried out in the time domain.

The numerical Implementation of nonlinear geometrical acoustics

Is divided Into three parts. First the ray paths are calculated using the ray

tracing program MEDUSA. Next the program CALCG uses the environmental

Information to perform a numerical Intregration along the ray path,

thereby calculating the quantity G. The ray path Information, the value G,

and the environmental Information are all Inputs to the program PLPROP.

PLPROP uses this information to calculate the distortion range variable, Z.

PLPROP has at its center the subroutine WAVPROP, a finite difference

Implementation of weak-shock theory for plane waves (Pestorius 1973).

Within PLPROP losses are accounted for In the frequency domain using the

empirical relations of Fran~ols and Garrision (1982). PLPROP has a variety

of switches that allow the investigator to selectively Include the effects of

nonlinear distortion, ordinary attenuation, and dispersion. The finite

amplitude effects may be "turned off" after a specific propagation distance

*
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has been reached. The output of the program is in the form of plots of the

time waveforms and energy spectra for preselected propagation distances.

The accuracy of the program was verified by comparing its results with

those of known analytic solutions for waves propagating through a lossless

homogeneous media. The peak pressure, the relative shock arrival time, and

the lI/e decay time of a weak shock with an exponentially decaying tail were

all predicted by PLPROP to a high degree of accuracy.

In the numerical study the effects of Inhornogeneity, ordinary

attenuation and dispersion, and nonlinear distort!on are investigated by

considering the propagation of explosion waveforms The signals used in

the Investigation are a weak shock with an exponentially decaying tall

(exponential pulse) and a more realistic explosion waveform which includes

the first bubble pulse. The exponential pulse is propagated 58.1 km along a

ray path starting at a depth of 300 m. The more realistic waveform Is

propagated 23 km along a ray path starting at a depth of 4300 m.

An exponential pulse corresponding to a 0.818 kg TNT explosion Is

used to Investigate the separate and combined effect s of Inhomogenelty,

ordinary attenuation, dispersion, and nonlinear distortion. The effect of

Inhomogenelty of the ocean on nonlinear distortion Is found to be small.

Dispersion is round to play an Important role In the arrival time of the peak

pressure. The propagation of a finite amplitude signal is found to depend on

the combination of nonlinear distortion and ordinary attenuation and

dispersion.

I' l!I4 j
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More realistic waveforms corresponding to two different

explosions, 0.818 kg and 22.7 kg TNT, are used to quantify the answer to the

question, "to what distance are finite amplitude effects Important?" The

spectra of the signals obtained by numerically propagating the signals to a

distance of 23 km accounting for ordinary attenuation and dispersion over

the entire 23 km and acounting for finite amplitude effects as Indicated

below:

Case A: finite amplitude effects neglected entirely,

Case B: finite amplitude effects Included only up to distance 150 m,

Case C: finite amplitude effects Included only up to distance I 100 m,

Case D: finite amplitude effects included for the entire 23 km path.

The Case D spectrum, relative to that of Case A, Is lower In the middle

frequency band and slightly higher In the low and high frequency bands. A

small downward shift of the spectral peaks In the low frequency band is

also noted. For the one ray path and waveform considered, finite amplitude

effects are found, In the case of a 0.818 kg TNT explosion, to be of small

consequence for frequencies below 6 kHz and distances beyond 1100 m. For

a 22.7 kg TNT explosion the corresponding quantities are frequencies below

4 kHz and distances beyond I 00 m.

',



APPENDIX A

RAY COORDINATES AND THE EXPRESSION FOR V2 *

In this appendix ray coordinates are defined, and it is shown that
V2 *=Ao - a(Ao/CoW)as, where Ao Is the area of the ray tube, co Is the

small-signal sound speed, and s Is the distance along the ray path. The

expression for V2* is required to simplify the transport equation,

Eq. (3-C. 19). To derive the expression, we use tensor analysis and a

nonorthogonal coordinate system called ray coordinates (see, for example,

Pitre 1984, p. 54). General Introductions to tensor analysis may be found In

standard texts such as those by Sokolnikoff (1964) and Synge and Schild

(1978).

The mathematical development proceeds as follows. The ray

coordinate system and the Jacoblan of the transformation from Cartesian

coordinates to ray coordinates are found. It Is then shown that the ,"

determinant of the Jacoblan Is related to the ray tube area. Next the

covariant and contravariant forms of the metric tensor for the ray

coordinate system are round. The contravarlant form of the metric tensor

and the determinant of the Jacoblan are then substituted Into the definition
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of the Laplacian for a general coordinate system. The desired result for

V2 " follows directly.

We define some notation: Let us denote the determinant of a

tensor by the same symbol, but without indices; for example, lAiJl is

denoted A. Let xi, where I = 1, 2, 3, stand for the rectangular Cartesian

coordinate system, that is, x1 = x, x2 = y, x3 z. Let Xr stand for another set

of coordinates, ray coordinates, namely x' = s, 2 = , and x3 = , where s

Is the distance along the ray path, and and y are the ray launch angles

with respect to the x and z axes. Both the ray coordinate system and the

Cartesian system are shown in Fig. 3.2. Ray coordinates may be thought of

as a coordinate system based on the path of a particle through space.

A physical understanding of the transformations between the two

coordinate systems Is sought. We define the coordinate transformations as

follows:

-i x'(x) (Al )
and

Xr = r(x) (A.2)

The Jacobian J'r of the transformation from Cartesian coordinates to ray

coordinates is

ax'" ax/as ay/las az/as

r" = ax i  ax/ $ ay/a$ azij /  (A.3)
a-x/a ay/ati az/laq

Let T be the derivative of the ray path position vector r (see Fig. A. I):
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FIGURE A
THE DERIVATIVES OF THE RAY PATH POSITION VECTOR
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T=(x, ay Fz (AA

where the bracketed terms are the components in the x, y, and z directions.

The derivatives with respect to the launch angles + and %p, denoted V. and

V,, are defined as follows:

t ax ay az\
V* = rj' , i,5 (A.5)

(ax ay az (A.6)

Recall from vector calculus that the magnitude of the vector product,

B x C, equals the area of the parallelogram defined by B and C. The vector

product of V, with V, defines a cross-sectional area of the ray tube. The

scalar triple product, T-( V+ x V.), defines Ao, the cross-sectional area of

the ray tube normal to the direction of propagation. As can be seen from

Eq. (A.3), the scalar triple product is also equal to the determinant of the

Jacoblan:

J [jr 1I
ST-( V+ x V,)

A0  (A.7)

UP.i .. . %~~
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The Laplacian of a function f In any general coordinate system is

define, j as fol lows (5okolnikoff 1964, Eq. 92.11):

V 2 a (,g grs Ifxr (A.8,I~ g axs

where f Is a function In the original coordinate system. To use Eq. (A.8) we

need grs, the contravarlant form of the metric tensor in the ray coordinate

system. To find g'" we first fInd the covariant form g,. Since the

contravariant and the covariant metric tensors are inverses of one another,

the contravariant metric tensor can be found from the covariant.

In a Euclidian space of three dimensions, the covariant form of the

metric tensor may be defined by considering an elemental distance (s. It is

known (Sokolnikoff 1964, Art. 29) that in a Cartesian system, the sjuare of

the elemental distance ds may be defined as

ds 2 = S dx i dx i  (A.9)

or

ds 2 = dx' dxJ1 i , (A. iO)

where N is the covariant form of the Kronecker delt.a 6I for the Car tesian

coordinate system. (In the Cartesian coordinate system, the contravariant

and covariant forms of a tensor are the same; therefore 5ij = Bij = BiJ.)

We seek an expression for dxi to use in Eq. (A.9). It follows from

Eq. (A. I) that

q6.
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dx' dxrj ( (A. 11)

If Eq. (A. 11 ) is substituted into Eq. (A9), it can be seen that

"drdNs (A.12)

Equation (A. 12) may be written as follows (Synge and Schild 1978, Eq. 2.102):

ds2 = gs dx dx (A. 13)

where

x x(A.14)

Equation (A. 14) Is the covariant form of the metric tensor for the ray

coordinate system.

The contravariant form of the metric tensor is now sought. The

contravarlant and covariant forms of the metric tensor are inverses; this

may be expressed mathematically as follows:

Sgrsrt st (A. 15)

Use of Eqs. (A. 15) and (A. 14) leads to the following expression for the

contravariant form of the metric tensor (Guy 1985):
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We need to know the determinant of the metric tensor. From

Eqs. (A.3) and (A. 14), it can be shown that

j 2 ~jj 1 2

9 g (A. 17)

The general form of the Laplacian, Eq. (A.8), can now be calculated.

Let the function f of Eq. (A.8) be the elkonal +. Examination of the

expression (axf~) yields

If both sides are multiplied by 1gs, it is seen that

~\I~i~ ax akxJ P9

X~j) a(A. 19)

* But from Eq. (3-D.4) it is known that
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' ' x I (A.20)

It therefore follows that

rs(lf\ I ( S \ (10)

=C - 1, O, .0 (A.21 )

If Eqs. (A. 16) and (A.21) are substituted into Eq. (A.8), it is seen that

V2-k = j-1 (J/Co)/Was (A22)

Use of Eq. (A.7) yields

V2* = Ao- 1 (Ao/co)/as (A.23)

which is Eq. (3-E. I). The Laplacian of the elkonal is proportional to the

variation of the ratio of ray tube area to the small-signal sound speed.

, ***j



APPENDIX B

THE PARAMETER OF NONLINEARITY FOR SEAWATER

In this appendix the analytic formulation of the parameter of

nonlinearity B/A (see, for example, Beyer 1974, p. 99) Is discussed. Some

empirical relations developed by Morfey (1 984c) for use In the numerical

evaluation of the parameter for seawater are then presented. The

parameter of nonlinearity accounts for the curvature of the pressure-

density relationship of a fluid. It can be seen from Fig. B. I that by moving a

finite amount from the quiescent values of the density and pressure, po and

P0, the slope of the pressure-density curve changes. By definition, the

square of the sound speed Is equal to the slope of the pressure-densi t -4

curve,

c 2  -= I (B.i)
lPJ

An investigation of the definition of the sound speed yields an analytift

expression for the parameter of nonlinearity. This expression may be

evaluated numerically by use of empirical formulas.

144
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P0  p

FIGURE B.1I
THE NONLINEARITY OF THE PRESSURE DENSITY RELATIONSHIP
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In order to develop an expression for c, we start with the

equation of state for seawater:

P - P (P,E,X) ,(13.2)

where k is the salinity, and X Is the entropy. Using a Taylor series

expansion and retaining terms up to second order yields

Po +A j+ k- to) {ae} + (X - XO){ i (B.3)

where

A apo{ xp-p

=Poc0 2  3 (BA

B 2 IP) I'.P B5B-0  (B.5

nl .(P -p0)/P (B.6)

Ils called the condensation. In arriving at Eq. (5.3), we assumed that

variations In the salinity and entropy are of second order In smallness.

Equation (B. 1) can be expanded by difrerentiating Eq. (5.3) with respect to p:

C2 rap )

=(A + Bnl)/po (B.7)

or (Ap0)(l + . B/A) .(B.8)
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Using a binomial expansion and retaining terms up to second order yields

the following equation:

c - (A/po) 112 (I + rB/2A) (B.9)

The next step Is to determine the sound speed as a function of the

particle velocity u. In the case of progressive plane waves traveling in the

positive x direction it can be shown that

n r u/co  (B. 10)

The use of Eq. (B. 10) in the case of outgoing waves in an inhomogeneous

medium deserves some attention. In the derivation of nonlinear acoustic

theory presented in Chapter 4, we used ray theory. There it is seen that an

arbitrary sound wave may be regarded as being composed of many locally

plane waves (Landau and Lifshitz 1959, p. 256). Since Eq. (B. 10) is valid for

plane waves and the wavefronts in the inhomogeneous medium are locally

plane, it is assumed that, by envoking the substitution rule (Chapter 2,

Section C), Eq. (B. 10) may be used to eliminate n from Eq. (B.9). Use of

Eq. (B. 10) along with the definition of A, Eq. (B.4), yields the following

equation:

c=c 0 + (B/2A)u , (B.I)

where u is the particle velocity In the direction of the ray path. In Eq. (B. 1)

It Is seen that within the second-order approximation, the sound speed of a

finite-amplitude disturbance Is the sum of the small-signal sound speed co

w1111 -11



and a perturbation term (B/2A)u. 
14

We now recast B/2A In a way that lends Itself to numerical

evaluation. Use of the definitions of A and B, Eqs. (B.4) and (B.5), leads to

the following:

0ap )

Algebraic manipulation of terms held under the same constraints yields

B POC0 facol (B.13)

Following the method of Beyer (1974, p. 100), we use the chain rule to

express the partial derivative of co In terms of temperature and pressure.

The result Is as follows:

B 'P J . 1a , (B.14)

where

I'_. aT _ __(T +273.15) (B. 15)

aT Is the coefficient of thermal expansion, Cp is the specific heat at

constant pressure, and T Is the temperature In 0C. MDfe (1 984c) has
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developed empirical relations for the density and the specific heat at

constant pressure. These relations are given below. Chen and Millero

(1976) have developed an expression for aT which Is valid to pressures of

100 ViPa. Thus B/2A can be numerically evaluated over a wide range of

salinities, temperatures, and pressures.

The following Is Morley's empirical relation for the density of

both fresh and seawater, p(P,T,,). The relative error is typically 10-04 for

the temperature range 00 < T < 100°C and 0.5 x 10-04 for the range

I ID < T < 400C. The Independent variables, their units, and the ranges over

which they may vary are listed below:

P = pressure (Pa) absolute 0<P <10

I T = temperature (0c) zero salinity 0<T 100

salt water 0<T< 40

E = salinity (0/0) 30<5<40

The empirical equation Is as follows:

p - I000/v , (B.16)
where

v = Vo + X/ F , (B.17)
where

X- li 1. 3 A, T'* (A10 *A, IT)k (B. 18)
where

F = i,- 3 BI T' + B10  + P/(9.80665 x 104)
+ G[P/(9.80665 x 104)12 (B. 19)

The constants are defined in Table B. 1.
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TABLE B. I

CONSTANTS REQUIRED IN THE EMPIRICAL EQUATION FOR DENSITY

1Aj Bi iG

0 0.25357 x 10+o4  0.71540 x 100°4 0.64575 x 10+°° -0.23430 x 10-04

1 0.14894x 10+02 0.43124 x 10+02

2 -0.72023 x 10-°' -0.36324 x 10+°°

3 -0.9103Ox 10-o4  0.24620 x 10-03

10 -0.35771 x 10 1  0.62851 x 10*0 1

11 -0.95138x 10-02
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Morfey's empirical relation for the specific heat at constant pressure

Cp(PT,t) is given below. For seawater at pressures up to 100 ViPa, we

estimate Cp from

Cp = CI (T,) + Co [./(9.80665 x 104) + KI. TI
-Co(1 + K,T) , (B.20)

where K = 12 (bar 0/00) is an empirical constant which relates the

increase of Cp with pressure for seawater to that for freshwater. The

error in Cp is typically 10-04. The function C1 gives the specific heat of

seawater at atmospheric pressure and is defined as follows:

C1 = lizlji,3 Bij T'I tJ-. (B.21 )

The error in this equation is typically 10-0 4 over the temperature range

0 - 400 C and over the salinity range 0 - 40 0/00. The function Co gives

specific heat of pure water and is defined as follows:

CO = Iiui.4 7-j=1.3 Aij TI- LPJ ' /(9.80665x 104)] (B.22)

This equation is valid for t = 0 (zero salinity) over the temperature and

pressure ranges T = 0- 900 C and P = 0 - 100 jiPa. The relative error is

typically 10-03 . The constants Aj and Bij are listed in Table B.2.
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TABLE B.2

CONSTANTS REQUIRED IN THE EMPIRICAL EQUATION FOR SPECIFIC
HEAT AT CONSTANT PRESSURE

j iu B1,,

11 0.42160 X 10404  0.42179 X 1040 4

2 1 -0.24895 x 10*0 ' -0.34218 x 10*0 '
3 1 0.46273 x I0o'~ 0.97816 x I0o'1

4 1 -0.22446 X 1-03  -0.91609 x10-03

1 2 -0,46649 x 100 -0.72849 x 10*01
2 2 0.12204 x I0-o' 0.19149 x 10+0
3 2 -0.19241 X 1-03  -0.65990 X 1-02

4 2 0.98686 x 10-0 0.73197 x 10-0

1 3 0.12458 X 10-03  0.22227 x 1-0'
2 3 -0.25157 x10-05  -0.27630OX10-0 2

3 3 0.16518 x10-07  0.11588 X1O-03

4 3 0.37555 x 10-"' -0.13749 x10-05



APPENDIX C

ANALYTIC SOLUTIONS FOR FINITE AMPLITUDE WAVES
VIA WEAK SHOCK THEORY

In this appendix the analytic solution for a weak shock with an

exponentially decaying tail propagating through a homogeneous medium Is

developed. The solution is used to verify the accuracy of the propagation

routine discussed in Chapter 5; the results of the numerical routine are

compared with those of the analytic solution. The development proceeds as

follows. The propagation of a finite amplitude wave through a homogeneous

medium is considered. A general solution is obtained for the case in which

the waveform contains weak shocks. This solution is not new; see, for

example, Blackstock (1972). Since the propagation routine operates with

nondimensional variables, the solution Is nondimensionalized. The

nondimenstonal solution Is then applied to the particular problem of the

propagation of a weak shock with an exponentially decaying tall. The

solution for this waveform is not new either (Rogers 1977; also see

Blackstock 1983).

Before discussing the propagation of weak shocks, we examine the

propagation of a continuous (i.e., no shocks present) f inite amplitude wave
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through a homogeneous medium. The following equation is the exact plane

wave equation for a gas:

ut + CoUX + puuX = 0 (C. I)

The Earnshaw solution (see, for example, Blackstock 1962, Eq. 18) satisfies

Eq. (C. 1) exactly. However, Earnshaw's solution Is a bit cumbersome, and

particularly so for problems Involving sources for which the boundary

condition is given in the form

u-f(t) at x-O (C.2)

It is convenient to use an approximate wave equation. Use of the

first-order plane wave equation and the substitution rule of Chapter 2

converts Eq. (C. I) into

Ux + C0 u - Pco 2uu t = 0 (C.3)

Use of the definition of retarded time for a plane wave, Eq. (3-C. 1),

transforms Eq, (C.3) Into

u-PCo-2UUt, (C
ux - - 0 .(C.4),

An equally valid expression In terms of the presssure P' Is

P1 - (P/PoCo3)p'p't' " 0 (C.5)

Equation (C.5) Is obtained from Eq. (C.4) by using the expression (see, for

example, Blackstock 1962, Eq. 95)

'III' 114111i
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u =P'/poco -pP'/2p% c (C.6)

The "Earnshaw solution" of Eq. (C.6) for the boundary condition

P'=g(t) = g(t') at x =0 (C.7)
is

where
*t' 4Pg(+)X/pOc 03 

.(C.9)

By using the transforms of the independent and dependent variables given in

Table C. 1, the solution presented in Eqs. (C.8) and (C.9) can be used for

nonplanar geometries and inhomogeneous f luids (Blackstock 1966; Carlton

and Blackstock 1974).

TABLE C. I
DISTORTION RANGE AND TRANSFORM PRESSURE VARIABLES

z w

Plane x Pe

Cylindrical 2,1r0 (-Ir - Iro) P' (r/ ro)1

Spherical ro fn r) P' (rr)

Inhomogeneous Fluid SO kn (Gs/so) P'(poCO/AopC) 112

Here r is the range and ro Is the reference range. If the boundary condition
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W-g(t) at Z-O (C.10)

the general solution to a second approximation Is as fol lows:

where t' + g(#)pZ/poC03  (C.12)

This solution is referred to as the generalized approximate Earnshaw

solution.

We now discuss weak shocks within the context of the Earnshaw

solution. The approximate Earnshaw solution Is valid on either side of a

weak shock; knowledge of the shock strength allows one to tie the two

Earnshaw solutions together. The relative arrival time of the shock is,

however, unknown; we therefore seek an equation for the relative shock

arrival time. It turns out, however, that we must first find an expression

for the shock velocity.

Application of the equations of hydrodynamics to a propagating

weak shock leads to an equation for the shock velocity. Consider a plane

weak shock propagating through a homogeneous fluid. The fluid ahead of the

shock Is assumed to be undisturbed; its properties are denoted by the

subscript a. The properties of the fluid behind the shock are denoted by the

subscript b. If the continuity, momentum, and energy equations are applied

to the control volume moving with the shock velocity Vs, several relations,

called the Rankine-Hugoniot shock relations, can be derived:

- p -b ~ .
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Pb(Vsh ub) PVh , (C. 13)

Pb = P. P ubVsh ' (C. 14)

Vsh2 - pUbV - C0
2 = 0 (C. 15)

Following Blackstock (1972), we solve Eq. (C. 15) for an approximate

expression for the shock velocity Vsh:

V5 
= co + pub/ 2  (C. 16)

If the particle velocity in front of the wave had been the nonzero value u.,

the following equation would have obtained:

Vsh = cO + i(ub + u,)/2 (C. 17)

Since the particle velocity both ahead of and behind the shock are known

from the two Earnshaw solutions, the shock velocity can be calculated.

Use of the expression for the shock velocity, Eq. (C. 17), leads to an

expression for the relative shock arrival time. Still following Blackstock,

we assume that the shock first occurred at time I and position A. The

current position and time of the shock are denoted by x. and tsh,

respectively, where

tr h + J dxlV h (C. 18)

If a binomial expansion is used and terms up to second order are retained,

Eq. (C. 17) may be expressed as

;I
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I/Vsh I I/co - P(Ub + u.)/2Co02 (C. 19)

Substitution of Eq. (C. 19) into Eq. (C. 18) and simplification of the result

using the definition of the retarded time variable, Eq. (3-C. I), as well as the

progressive wave impedance relation, yields

1:6= A ;.' - (p/2poco3)J1 (Pb' + P'.) dx (C.20)

The above equation can be expressed In the terms of the transformed

Independent and dependent variables, W and Z, since the RankIne-Hugoniot

relations are Invariant under the tranrormations (Blackstock 1966,

Appendix A). Restating Eq. (C.20) In terms of W and Z gives

t I ' - (p/2p0c03) J (W + WO) dZ (C.21)

The differential form or Eq. (C.21) Is

dt'sh/dZ - -p(Wb + Wl)/2poco3  (C.22)

Equations (C.2 1) and (C.22) give the relative shock arrival time. Other

useful relations regarding the relative shock arrival time are obtained

from the solution for the propagation of continuous waves, Eqs. (C. II) and

(C. 12). By noting that the value of W is different before and after the shock,

we obtain the following:

t'sh = b - (pZ/poC03) g(ob) , (C.23)

t = , - (pZ/PoCo3) g(* ) (C.24)

Mc.

%:w -' ' % ' h% ! . %A:- . .,.
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As was mentioned earlier, we are developing this solution to

compare with the results of the propagation routine. Since the computer

algorithm operates on nondimensional variables, we nondimensionalize the

solution. This is done using characteristic dimensions of the problem. The

nondimensional variables are defined below:

V -N W/P'0  (C.25)

T a- titc  (C.26)

r I -- t'/tc (C.27)

( = pWoZ/poC03tc (C.28)

-It W (C.29)

e - P'/Poco2 , (C.30)

G(M) ! g(*)/P'o , (C.3 1)

where tc is a characteristic time, and P'o is the reference pressure

amplitude. In terms of the nondimensional variables, the nonlinear wave

equation and its solution are expressed as follows:

Nonlinear wave equation Va - VV , = 0 , (C.32)

Boundary condition V = G() at a = 0 , (C.33)

Continuous wave solution V = G(M) , (C.34)

where
R- ' + (V , (C.35)

Relative shock arrival time r..s z 1/2 l(Ve + Vb) do (C.36)
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dt'/do= -1/2 (V. + Vb) (C.37)

We now use the nondimensional solution to solve for the relative

shock arrival time, the shock amplitude, and the I/e decay time of a weak

shock with an exponentially decaying tail. The boundary condition for the

waveform is as follows:

P' = A exp (-t/To ) H(t) at r = ro  , (C.38)

which converts to
W - A exp (-t/To) H(t) at Z - 0 (C.39)

where H(t) is the step function. Expressing the boundary condition In terms

of the nondimensional variables yields

V = exp (-t)H(t) at a = 0 , (C.40)

where the characteristic values t¢ and Wo are defined to be To and A,

respectively. Use of Eqs. (C.34) and (C.35) leads to the solution to the

continuous portion of wave:

V = exp(- ) (C.41)
where

1 = + a exp HD (C.42)

We now solve for the shock amplitude. Considering only the shock,

we may write Eqs. (C.41) and (C.42) as follows:

Vb = exp (-§b) (C.43)
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b = Sh + (Vb (C.44)

Taking the natural logarithm of Eq. (C.43), and then substituting the result

into Eq. (C.44) and rearranging, we obtain the following:

T$sh - -[kn(Vb) + oV b  (C.45)

By taking the derivative of Eq. (C.45) with respect to a and using Eq. (C.37)

noting that Va Is equal to zero, we arrive at the following expression:

-1/2 Vb + (1 + (IVb) dVb/da = 0 (C.46)

If Eq. (C.46) is integrated with respect to a, noting that the integration

constant must be chosen to fit the boundary conditions, a quadratic equation

with the following roots is obtained:

Vb =[i ± (I + 2o)1/o (C.47)

The positive root in Eq. (C.47) allows the boundary condition, Vb = I at o =0,

to be recovered.

We now solve for the relative shock arrival time We start b(I

substituting the positive root of Eq. (C.47) into Eq. (CI36), again notinq that

VA is zero. If the starting time of the shock is assumed to be 0, the result

is as follows:

flh -[nVb + OV 1 (. 48)

The expression for the I/e decay time is obtained using Eqs ( 47)

5 . ,
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and (C48). The lie decay time is defined as the time required for the pulse

to decay to lI/e of its current value, Vb/e. Substitution of Vb/e for Vb in

Eq. (C.48) yields the relative time of the lie point of the waveform. The

following expression for the li/e decay time is obtained by subtracting the

relative time of l/ e point from the relative shock arrival time,

S11/0 = -[I + a Vb(l - le)] , (C.49)

where r' I/U is the I /e decay time.

In summary we have found the solution for the shock amplitude,

the relative shock arrival time, and the lI/e decay time of a weak shock

with an exponentially decaying tail, Eqs. (C.47), (C.48), and (C.49),

respectively. This information, coupled with the definitions of W and Z

described in Table C. 1, permits us to calculate the shock amplitude, relative

shock arrival time, and the l/e decay time independent of whether the wave

is plane, cylindrical, spherical, or confined to a ray tube in an

inhomogeneous medium.



APPENDIX D

COMPUTER PRO6RAM

Computer program PLPROP is a FORTRAN 4 program which

implements nonlinear geometrical acoustics. The program Is described at

length In Chapter 5. The heart of the program Is the pair of subroutines

WAVPROP and RESAMP which were written by Pestorius (1973). The fast

Fourier Transform routine and plotting routines, which were written at

Applied Research Laboratories, The University of Texas at Austin, Austin,

Texas, are used extensively in the program.

The Input files and other parameters required of the user are

described In the program. The computer code has a running commentary on

Its function which should help the user understand operation of the

program.
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